외부챔버와 유연한 튜브로 연결된 LCD 패널 검사기 방진용 공기 스프링의 열 및 동적 연성거동에 대한 연구: PART II, 실험적 검증 및 고찰

Study on the Thermal and Dynamic Behaviors of Air Spring for vibration isolation of LCD panel inspecting machine connected with an External Chamber through a flexible tube: PART II, Experimental validation and investigation

  • 석종원 (중앙대학교 기계공학부) ;
  • 이주홍 (중앙대학교 기계공학부 대학원) ;
  • 김필기 (중앙대학교 기계공학부 대학원)
  • 투고 : 2011.02.10
  • 심사 : 2011.02.28
  • 발행 : 2011.03.31

초록

In this study, the dynamic characteristics of an air spring connected with an external chamber through a flexible tube are examined. The uncoupled dynamic parameters of the air spring are identified through experiments, followed by the suggestion of a model-based approach to obtain the remaining coupled dynamic parameters using the various frequency response functions derived in PART I paper [1]. To improve or control the damping characteristics of the air spring, this vibration isolation air spring system is physically established in laboratory scale. And we attempt to identify various parameters used to describe to air spring system by both theoretically [1] and experimentally, which is performed in this report. The damping parameter of the tube system is identified through experiments on the system incorporated with the air cylinder, and a nonlinear regression procedure is employed to find solutions. The resulting value is used to expect the frequency response function of dynamic pressure in the top chamber (air spring) with respect to that in the bottom chamber (external chamber). Comparison with the experimental data supports the validity of the present estimation procedures. Also, the dynamic mechanism of the damping effects particularly in a low frequency range is investigated through this experimental endeavor.

키워드

참고문헌

  1. 석종원, 이주홍, 김필기, "외부 챔버와 연결된 방진용 공기 스프링의 열 및 동적 거동에 대한 연구: PART I, 이론적 모델링," 한국 반도체 및 디스플레이 장비학회지, 제출 중, 2011.
  2. 이주홍, COG 본딩공정 고속복합 검사시스템의 방진용 에어 스프링의 동적 파라미터 규명 연구, 한국정밀학회지, Vol. 27, No. 7. pp. 13-20, 2010.
  3. J.E. Morton, "Rubber Technology 3rd Ed.," Van Nostrand Reinhold, New York, 1987.
  4. D.G. Lee, "Composite Materials," Sungandan, 1993.
  5. H.T. Ahn, "Characterization of the mechanical properties of fiber-reinforced rubber-matrix composite materials," Master thesis in KAIST, 1999.
  6. H.W. Lee, S.H. Kim and H. Hun, "Finite element analysis of diaphragm-type air springs with fiberreinforced rubber composites," J. of Composite Materials, Vol. 37, No. 14, pp. 1261-1274, 2003. https://doi.org/10.1177/0021998303037014003
  7. A.E. Gent and A.G. Thomas, "Forced-deflection relations for a model air spring," Rubber chemistry and technology, Vo. 47, No. 2, pp. 384-395, 1974. https://doi.org/10.5254/1.3540448
  8. B. Agnew, "A note on the design of air spring," Proc. Institution of Mechanical Engineers, Vo. 205, pp. 207-209, 1991.
  9. A. Boros, F. Kovacs and K. Lengyel, "Modelling of axial-symmetric-fibre-reinforced rubber membranes loaded by inner pressure; Computer simulation of airsprings," International Rubber Conference (IKT/IRC 91), pp. 487-489, 1991.
  10. C. Mabmann, "Application of FEA on textile reinforced rubber structures as used in air spring," Kautschuk Gummi Kunststoffe, Vo. 48, No. 6, pp. 423-429, 1995.
  11. J.C. Halpin and J.L. Kardos, "The Halpin-Tsai equations: a review," Polymer engineering and science, Vo. 16, No. 5, pp. 344-352, 1976. https://doi.org/10.1002/pen.760160512
  12. R.F. Gibson, "Principles of Composite Meterial Mechanics," McGraw-Hill, New York, 1994.
  13. J.-H. Lee and K.-J. Kim, "Modeling of nonlinear complex stiffness of dual-chamber pneumatic spring for precision vibration isolations," J. of Sound and vibration, Vol. 301, No. 3-5, pp. 909-926, 2007. https://doi.org/10.1016/j.jsv.2006.10.029
  14. Mathworks, $Matlab^{TM}$, version 7.1, Mathworks Inc., 2005.
  15. B. R. Munson, D. F. Young and T. H. Okiishi, Fundamentals of fluid mechanics, 3rd edition, John Wiley & Sons Inc., NY, 1998.