Effect of Arresting MCF-7 Human Breast Carcinoma Cell at G2/M Phase of Trichosanthes Kirilowii

천화분이 MCF-7 유방암 세포주의 G2/M 세포주기 억제에 미치는 영향

  • Jeong, Seung-Min (Department of Orinetal Internal Medicine, College of Oriental Medicine, Kyungwon University) ;
  • Jeong, Mi-Kyung (Department of Orinetal Internal Medicine, College of Oriental Medicine, Kyungwon University) ;
  • Ko, Seong-Gyu (Department of Preventive Medicine, College of Oriental Medicine, Kyung-Hee University) ;
  • Choi, You-Kyung (Department of Orinetal Internal Medicine, College of Oriental Medicine, Kyungwon University) ;
  • Park, Jong-Hyeong (Department of Orinetal Internal Medicine, College of Oriental Medicine, Kyungwon University) ;
  • Jun, Chan-Yong (Department of Orinetal Internal Medicine, College of Oriental Medicine, Kyungwon University)
  • 정승민 (경원대학교 한의과대학 내과학교실) ;
  • 정미경 (경원대학교 한의과대학 내과학교실) ;
  • 고성규 (경희대학교 한의과대학 예방의학교실) ;
  • 최유경 (경원대학교 한의과대학 내과학교실) ;
  • 박종형 (경원대학교 한의과대학 내과학교실) ;
  • 전찬용 (경원대학교 한의과대학 내과학교실)
  • Received : 2011.07.20
  • Accepted : 2011.08.26
  • Published : 2011.10.25

Abstract

The purpose of this study is to investigate the anti-proliferative mechanism by Trichosanthes kirilowii (TCK) in MCF-7 human breast carcinoma cell. In this study, we used human breast cancer cell line, Michigan cancer foundation-7 cells (MCF-7 cells). They were co-incubated with 30~200 ${\mu}g$/ml TCK for 48 hours, and cell viability was measured by Water-soluble tetrazolium salt-1 (WST-1) assay. After MCF-7 cells were exposed to 60 ${\mu}g$/ml of TCK for 0, 3, 6, 12, 24, 48 hours, We performed flow analysis cytometry sorting(FACS) and western blot analysis. We investigated the effect of dose-dependent cell growth inhibition by TCK, which could be proved by WST-1 assay. Also, flow cytometry analysis showed that TCK increased percentage of subG1 phase and G2/M phase cell cycle. In addition, TCK induced apoptosis through the expression of caspase-9, -3 and poly(ADP-ribose) polymerase(PARP) activation. Moreover, we showed that ATM-dependent G2/M phase arrest by DNA damage and phosphorylation of chk2, cdc25C, cdc2(Tyr15). Taken together, these results suggest that by G2/M phase arrest through DNA damage and inducing of apoptosis through intrinsic pathway, TCK may have potential tumor suppressor in breast cancer.

Keywords

References

  1. 통계청. Death Rate, 2008. http://kosis.kr/themes/themes_02List.jsp
  2. Wu, C., Ray, R.M., Lin, M.G., Gao, D.L., Horner, N.K., Nelson, Z.C., et al. A case-control study of risk factors for fibrocystic breast conditions: Shanghai nutrition and breast disease study, China, 1995-2000. Am J Epidemiol. 160(10):945-960, 2004. https://doi.org/10.1093/aje/kwh318
  3. Horner, M.J., Ries, L.A.G, Krapcho, M., Neyman, N., Aminou, R., Howlader, N., et al. SEER Cancer Statistics Review, 1975-2006. National Cancer Institute, 2009.
  4. Soung, M.G., Joo, S.M., Song, A.R., Sung, N.D. QSAR on the inhibition activity of flavopiridol analogues against breast cancer MCF-7. J. Korean Soc. Appl. Biol. Chem. 50: 147-153, 2007.
  5. Chen, W.F., Huang, M.H., Tzang, C.H., Yang, M., Wong, M.S. Inhibitory actions of genistein in human breast cancer (MCF-7) cells. Biochimica et Biophysica Acta. Molecular Basis of Disease. 1638(2):187-196, 2003. https://doi.org/10.1016/S0925-4439(03)00082-6
  6. Lozoya, M. Hypogiucaemic activity of Opuntia streptacantha throughout it's annual cycle. Am J Chin Med. 17: 221-224, 1989. https://doi.org/10.1142/S0192415X89000310
  7. Park, C., Moon, D.O., Ryu, C.H., Choi, B., Lee, W., Kim, G.Y., Choi, Y. Beta-sitosterol sensitizes MDA-MB-231 cells to TRAIL- induced apoptosis. Acta Pharmacol Sin. 29(3):341-348, 2008. https://doi.org/10.1111/j.1745-7254.2008.00761.x
  8. Woyengo, T.A., Ramprasath, V.R., Jones, P.J. Anticancer effects of phytosterols. Eur J Clin Nutr. 63(7):813-820, 2009. https://doi.org/10.1038/ejcn.2009.29
  9. 신민교. 원색임상본초학. 서울, 영림출판사, pp 241-242, 250-252, 283-284, 1983.
  10. Dou, C.M., Li, J.C. Effect of extracts of trichosanthes root tubers on HepA-H cells and HeLa cells. World J Gastroenterol. 10(14):2091-2094, 2004. https://doi.org/10.3748/wjg.v10.i14.2091
  11. 이현희, 임은미. 자궁경부암세포에 대한 天花紛의 성장억제 및 세포사멸효과. 대한한방부인과학회지 18(3):77-91, 2005.
  12. Oh, H., Mun, Y.J., Im, S.J., Lee, S.Y., Song, H.J., Lee, H.S., Woo, W.H. Cucurbitacins from Trichosanthes kirilowii as the inhibitory components on tyrosinase activity and melanin synthesis of B16/F10 melanoma cells. Planta Med. 68(9):832-833, 2002. https://doi.org/10.1055/s-2002-34418
  13. 김동우, 이종훈, 유화승, 조정효, 이연월, 손창규, 조종관. 천화 분 추출물이 혈관신생 및 암세포 성장에 미치는 영향. 대한한방내과학회지 29(2):490-499, 2008.
  14. Steller, H. Mechanism and genes of cells suicide. Science. 267: 1145-1149, 1995.
  15. Nunez, G., Benedict, M.A., Hu, Y., Inohara, N. Caspases: The proteases of the apoptotic pathway. Oncogene. 17(32): 37-45, 1998.
  16. Kothakota, S., Azuma, T., Reinhard, C., et al. Caspase-3 -generated fragment of gelsolin: Effector of morphological change in apoptosis. Science. 278: 294-298, 1997. https://doi.org/10.1126/science.278.5336.294
  17. Lee, J.H., Paull, T.T. Activation and regulation of ATM kinase activity in response to DNA double-strand breaks. Oncogene. 26(56):7741-7748, 2007. https://doi.org/10.1038/sj.onc.1210872
  18. Tang, X., Hui, Z.G., Cui, X.L., Garg, R., Kastan, M.B., Xu, B. A novel ATM-dependent pathway regulates protein phosphatase 1 in response to DNA damage. Mol Cell Biol. 28(8):2559-2566, 2008. https://doi.org/10.1128/MCB.01711-07
  19. Kastan, M.B., Lim, D.S. The many substrates and functions of ATM. Nat Rev Mol Cell Biol. Dec;1(3):179-186, 2000. https://doi.org/10.1038/35043058
  20. Matsuoka, S., Rotman, G., Ogawa, A., Shiloh, Y., Tamai, K., Elledge, S.J. Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc Natl Acad Sci USA. Sep 12;97(19):10389-10394, 2000. https://doi.org/10.1073/pnas.190030497
  21. Jessus, C., Ozon, R. Function and regulation of cdc25 protein phosphate through mitosis and meiosis. Cell Cycle Res. 1: 215-228, 1995.
  22. Peng, C.Y., Graves, P.R., Thoma, R.S., Wu, Z., Shaw, A.S., Piwnica-Worms H. Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science. Sep 5, 277(5331):1501-1505, 1997. https://doi.org/10.1126/science.277.5331.1501
  23. Atherton-Fessler S., Liu, F., Gabrielli, B., Lee, M.S., Peng, C.Y., Piwnica-Worms H. Cell cycle regulation of the p34cdc2 inhibitory kinases. Mol Biol Cell. Sep;5(9):989-1001, 1994. https://doi.org/10.1091/mbc.5.9.989
  24. McGowan, C.H., Russell, P. Human Wee1 kinase inhibits cell division by phosphorylating p34cdc2 exclusively on Tyr15. EMBO J. Jan, 12(1):75-85, 1993.
  25. Wells, N.J., Watanabe, N., Tokusumi, T., Jiang, W., Verdecia, M.A., Hunter, T. The C-terminal domain of the Cdc2 inhibitory kinase Myt1 interacts with Cdc2 complexes and is required for inhibition of G(2)/M progression. J Cell Sci. Oct, 112(19):3361-3371, 1999.
  26. 전국한의과대학 공동교재편찬위원회. 본초학. 서울, 영림출판사, pp 165-166, 2007.