DOI QR코드

DOI QR Code

Polymer $1{\times}2$ Thermo-Optic Digital Optical Switch Based on the Total-Internal-Reflection Effect

  • Han, Young-Tak (Convergence Components & Material Research Laboratory, ETRI, Photonic Computer Systems Laboratory, the Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Shin, Jang-Uk (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Park, Sang-Ho (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Han, Sang-Pil (Creative & Challenging Research Division, ETRI) ;
  • Baek, Yong-Soon (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Lee, Chul-Hee (Optical Device Research Team, ChemOptics Inc.) ;
  • Noh, Young-Ouk (Optical Device Research Team, ChemOptics Inc.) ;
  • Park, Hyo-Hoon (Photonic Computer Systems Laboratory, Korea Advanced Institute of Science and Technology (KAIST))
  • 투고 : 2010.10.08
  • 심사 : 2010.12.20
  • 발행 : 2011.04.30

초록

This letter presents a polymer $1{\times}2$ thermo-optic totalinternal-reflection digital optical switch (TIR-DOS) with an index contrast of 1.5%-${\delta}$ operating at low power consumption. The structure of our $1{\times}2$ TIR-DOS was created by adding a reflection port to that of a conventional multimode filtering variable optical attenuator. To improve the total-internalr-eflection efficiency, a heater offset was applied to the crossing region of multimode waveguides of the TIR-DOS. The fabricated $1{\times}2$ TIR-DOS shows a low electrical power consumption of 18 mW for an on-off ratio of 35 dB.

키워드

참고문헌

  1. J.U. Shin et al., "Reconfigurable Optical Add-Drop Multiplexer Using a Polymer Integrated Photonic Lightwave Circuit," ETRI J., vol. 31, no. 6, Dec. 2009, pp. 770-777. https://doi.org/10.4218/etrij.09.1209.0024
  2. Y.O. Noh et al., "Thermooptic 2${\times}$2 Asymmetric Digital Optical Switches With Zero-Voltage Operation State," IEEE Photon. Technol., Lett., vol. 16, no. 2, Feb. 2004, pp. 446-448. https://doi.org/10.1109/LPT.2003.823138
  3. U. Siebel et al., "Polymer Digital Optical Switch with an Integrated Attenuator," IEEE Photon. Technol. Lett., vol. 13. no. 9, Sept. 2001, pp. 957-959. https://doi.org/10.1109/68.942659
  4. X. Jiang, et al., "Low Crosstalk 1${\times}$2 Thermooptic Digital Optical Switch with Integrated S-Bend Attenuator," IEEE Photon. Technol. Lett., vol. 18, no. 4, Feb. 2006, pp. 610-612. https://doi.org/10.1109/LPT.2006.870184
  5. Y.T. Han et al., "Crosstalk-Enhanced DOS Integrated with Modified Radiation-Type Attenuators," ETRI J., vol. 30, no. 5, Oct. 2008, pp. 744-746. https://doi.org/10.4218/etrij.08.0208.0149
  6. Y.T. Han et al., "Fabrication of 10-Channel Polymer Thermo-Optic Digital Optical Switch Array," IEEE Photon. Technol. Lett., vol. 21, no. 20, Oct. 2009, pp. 1556-1558. https://doi.org/10.1109/LPT.2009.2029870
  7. Y.O. Noh et al., "PLC-Type Variable Optical Attenuator Operated at Low Electrical Power," Electron. Lett., vol. 36, no. 24, Nov. 2000, pp. 2032-2033. https://doi.org/10.1049/el:20001431
  8. X. Wang et al., "Polarization-Independent All-Wave Polymer-Based TIR Thermooptic Switch," J. Lightw. Technol., vol. 24, no. 3, Mar. 2006, pp. 1558-1565. https://doi.org/10.1109/JLT.2005.863236
  9. T. Mizuno et al., "Compact and Low-Loss Arrayed Waveguide Grating Module with Tolerance-Relaxed Spot-Size Converter," IEEE Photon. Technol. Lett., vol. 15, no. 2, Feb. 2003, pp. 239-241. https://doi.org/10.1109/LPT.2002.806836
  10. ChemOptics Inc. http://www.chemoptics.co.kr
  11. X. Wang et al., "Crosstalk-Minimized Polymer 2${\times}$2 Thermooptic Switch," IEEE Photon. Technol. Lett., vol. 18, no. 1, Jan. 2006, pp. 16-18. https://doi.org/10.1109/LPT.2005.860035

피인용 문헌

  1. Low-cost 1×2 plastic optical beam splitter using a V-type angle polymer waveguide for the automotive network vol.50, pp.7, 2011, https://doi.org/10.1117/1.3595428
  2. 2$\,\times\,$2 Polymer Thermo-Optic Digital Optical Switch Using Total-Internal-Reflection in Bend-Free Waveguides vol.24, pp.19, 2011, https://doi.org/10.1109/lpt.2012.2210280
  3. N N polymer matrix switches using thermo-optic total-internal-reflection switch. vol.20, pp.12, 2011, https://doi.org/10.1364/oe.20.013284
  4. Preparation, thermo-optic property and simulation of optical switch based on azo benzothiazole polymer vol.111, pp.1, 2011, https://doi.org/10.1007/s00340-012-5311-3
  5. Polymer thermal optical switch for a flexible photonic circuit vol.57, pp.1, 2011, https://doi.org/10.1364/ao.57.000014
  6. Tunable Bulk Polymer Planar Bragg Gratings Electrified via Femtosecond Laser Reductive Sintering of CuO Nanoparticles vol.9, pp.13, 2011, https://doi.org/10.1002/adom.202002203