DOI QR코드

DOI QR Code

Electroreflectance Study of ZnSe in ZnSe/GaAs Heterostructure

ZnSe/GaAs 이종접합 구조에서 ZnSe의 Electroreflectance 연구

  • Jo, Hyun-Jun (Department of Physics, Yeungnam University) ;
  • Bae, In-Ho (Department of Physics, Yeungnam University)
  • Received : 2012.08.01
  • Accepted : 2012.11.27
  • Published : 2012.11.30

Abstract

The strain effects of ZnSe epilayer on ZnSe/GaAs heterojunction structure grown by molecular beam epitaxy have been investigated by using electroreflectance (ER) spectroscopy. The ER measurements were performed as a function of modulation voltage, dc bias voltage, and temperature. From the room temperature ER spectrum, we observed a heavy-hole (HH: 2.609 eV) and light-hole (LH: 2.628 eV) transitions due to a compressive strain. With increasing the bias voltage, the amplitude of HH transition signal decreased and the amplitude of LH transition signal was almost the same. From the temperature dependence of ER spectra, we have studied the interaction between the strain and the thermal expansion coefficient.

Molecular beam epitaxy 방법으로 성장된 ZnSe/GaAs 이종접합 구조에서 ZnSe의 electroreflectance (ER) 특성을 조사하였다. ER 측정은 변조 전압, 인가 전압 및 온도의 변화에 따라 수행하였다. 상온의 ZnSe ER 스펙트럼에서 압축 변형에 의하여 분리된 가전자대의 무거운 정공(HH: 2.609 eV) 및 가벼운 정공(LH: 2.628 eV)과 전도대 사이의 전이를 관측하였다. 인가전압이 증가함에 따라 HH 전이 신호의 크기는 점차 감소하였으나, LH 전이 신호의 크기 변화는 미미하였다. 온도에 따른 ER 스펙트럼의 변화를 통하여 변형과 열팽창 계수와의 관계를 연구하였다.

Keywords

References

  1. T. Yao, The Technology and Physics of Molecular Beam Epitaxy (Plenum, New York, 1985), Chap. 10.
  2. E. Kim, Y. H. Son, G. S. Eom, S. J. Cho, and D. W. Hwang, J. Korean Vac. Soc. 15, 458 (2006).
  3. O. Madelung, Numerical data and Function relationships in Science and Technology (Springer, Berlin, 1982), Vol. 17.
  4. V. Wagner, M. Becker, M. Weber, T. Füller, M. Korn, and J. Geurts, Thin Solid Films 364, 119 (2000). https://doi.org/10.1016/S0040-6090(99)00929-3
  5. N. Kumagai, H. D. Jung, T. Hanada, Z. Zhu, T. Yasuda, K. Kimura, S. D. Lee, M. H. Jeon, H. S. Park, T. I. Kim, and T. Yao, J. Crystal Growth 184/185, 505 (1998). https://doi.org/10.1016/S0022-0248(98)80105-X
  6. J. Y. Leem, J. S. Son, C. R. Lee, C. S. Kim, Y. K. Cho, Hwack J. Lee, S. K. Noh, and I. H. Bae, Appl. Phys. Lett. 71, 3257 (1997). https://doi.org/10.1063/1.120307
  7. C. B. O'Donnell, G. Lacey, G. Horsburgh, A. G. Cullis, C. R. Whitehouse, P. J. Parbrook, W. Meredith, I. Galbraith, P. Mock, K. A. Prior, and B. C. Cavenett, J. Crystal Growth 184/185, 95 (1998). https://doi.org/10.1016/S0022-0248(98)80301-1
  8. D. P. Aspnes, Phys. Rev. B 10, 4228 (1974). https://doi.org/10.1103/PhysRevB.10.4228
  9. J. H. Kim, H. J. Jo, and I. H. Bae, J. Korean Vac. Soc. 19, 134 (2010). https://doi.org/10.5757/JKVS.2010.19.2.134
  10. M. Stoehr, E. Hamdani, I. P. Lascaray, and M. Maurin, Phys. Rev. B 44, 8912 (1991). https://doi.org/10.1103/PhysRevB.44.8912
  11. J. A. Tuchman, Z. Sui, I. P. Herman, R. L. Gunshor, L. A. Kolodziejski, D. A. Cammack, and M. Shone, In Properties of II-IV Semiconductors. Edited by F. J. Bartoli, H. F. Schaake, and J. F. Schetzina, Mater. Res. Sot. Symp. Proc. 161, 471 (1990).
  12. H. Lee, J. Appl. Phys. 41, 2988 (1970). https://doi.org/10.1063/1.1659350