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Introduction

	 Lung cancer is the most common cause of cancer-
related death in both men and women throughout the 
world. Lung cancer can be broadly classified into two 
main types based on the morphological characteristics: 
non-small cell lung cancer and small cell lung cancer (Xiao 
et al., 2011). There are many causes of cancer include 
carcinogens (such as those in tobacco smoke), ionizing 
radiation, viral infection, etc. Cigarette smoke contains 
over 60 known carcinogens (Hech, 2003)  and tobacco 
smoke is the main contributor to lung cancer (Biesalski 
et al., 1998) . Therefore, the tissues of those smokers with 
and without lung cancer provide great resources to study 
their gene expression changes and find out those lung 
cancer related genes to help corresponding treatment.
	 RNA-Seq technologies are now popularly used 
in diverse transcriptome studies (such as alternative 
splicing, gene expression, gene fusions etc.) and exhibit 
many amazing aspects (Mortazavi et al., 2008; Sultan 
et al., 2008; Maher et al., 2009; Zhao, 2009; Gan et 
al., 2010; Guttman et al., 2010; Trapnell et al., 2010; F, 
2011; Geng Chen, 2011; Pflueger, 2011). Compared with 
microarrays, RNA-Seq has many advantages. It needs less 
RNA samples, products lower background noise, could 
detect new genes and/or transcripts and so on (Marioni 
et al., 2008; Wang et al., 2009; Marguerat and Bahler, 
2010; Nagalakshmi et al., 2010; Beane, 2011). To better 
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Abstract

	 Lung cancer seriously threatens human health, so it is important to investigate gene expression changes in 
affected individuals in comparison with healthy people. Here we compared the gene expression profiles between 
smokers with and without lung cancer. We found that the majority of the expressed genes (threshold was set as 
0.1 RPKM) were the same in the two samples, with a small portion of the remainder being unique to smokers 
with and without lung cancer. Expression distribution patterns showed that most of the genes in smokers with 
and without lung cancer are expressed at low or moderate levels. We also found that the expression levels of 
the genes in smokers with lung cancer were lower than in smokers without lung cancer in general. Then we 
detected 27 differentially expressed genes in smokers with versus without lung cancer, and these differentially 
expressed genes were foudn to be involved in diverse processes. Our study provided detail expression profiles 
and expression changes between smokers with and without lung cancer.

Keywords: Genes - lung cancer - smokers - gene expression profiles - RNA-Seq

RESEARCH ARTICLE

Comparison of the Gene Expression Profiles Between Smokers 
With and Without Lung Cancer Using RNA-Seq
Peng Cheng1&, You Cheng2&, Yan Li1, Zhenguo Zhao1, Hui Gao1, Dong Li1, 
Hua Li1, Tao Zhang1*

understand the gene expression differences between 
smokers with and without lung cancer, we analyzed two 
related datasets from short read archive (Beane, 2011). 
	 We quantified the expression of human genes in 
these two samples of smokers with and without lung 
cancer. Then, we compared their expressed genes and 
studied the gene expression distribution patterns in both 
two samples. To further investigate the gene expression 
changes between smokers with and without lung cancer, 
we carried out differential expression analysis and 
found out a number of differentially expressed genes. 
The results show some interesting phenomenon of the 
gene expression profiles between smokers with and 
without lung cancer, and highlighting that the RNA-Seq 
technologies are powerful to study the characteristics of 
human transcriptome.

Materials and Methods

	 The RNA-Seq datasets of smokers with and without 
lung cancer were downloaded from short read archive 
(SRA) with the accession number: SRX060175 (smokers 
without lung cancer) and SRX060176 (smokers with 
lung cancer). The human reference genome hg19 was 
downloaded from UCSC http://genome.ucsc.edu/. We 
first extracted the human transcript sequences from hg19. 
Then the RNA-Seq reads of SRX060175 and SRX060176 
were mapped onto those transcripts with two mismatches 
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allowed using SeqMap (Hui Jiang, 2008). The gene 
expression levels were calculated using rSeq (Hui Jiang, 
2008) and 0.1 RPKM (reads per kilobase of exon model 
per million mapped reads) was chosen as the threshold. 
Differential expression analysis between these two 
samples of smokers with and without lung cancer was 
carried out using the software of DESeq and chose its 
model of without any replicates. Adjusted P-value <0.1 
were used as the threshold of differentially expressed 
genes.
	 To study the gene expression profiles between smokers 
with and without lung cancer, we downloaded two related 
RNA-Seq datasets from short read archive (SRA) with 
the accession number: SRX060175 (smokers without 
lung cancer) and SRX060176 (smokers with lung cancer) 
(Beane, 2011). The corresponding samples were from 
the human large airway epithelial cells of smokers with 
and without lung cancer. They were sequenced using the 
Illumina Genome Analyzer IIx platform with standard 
Illumina mRNA-Seq protocol. The reads are single-end 
and 36 bp in length. There are total ~26.94 million and 
~27.78 million reads for SRX060175 and SRX060176, 
respectively.
	 We used the methods of rSeq (Jiang and Wong, 
2009) to quantify the human gene expressions. First, we 
extract the human transcript sequences from the human 
reference genome hg19. Then we mapped(Hui Jiang 
2008; Marguerat and Bahler, 2010) the RNA-Seq reads 
of SRX060175 and SRX060176 to those transcripts 
with two mismatches allowed. We computed the gene 
expression levels using rSeq and chose 0.1 RPKM (reads 
per kilobase of exon model per million mapped reads) as 
the threshold. For the sample of smokers without lung 
cancer (SRX060175), 16,248 genes expressed higher 
than 0.1 RPKM; and 16,321 genes for the sample of 
smokers with lung cancer (SRX060176). Between these 
two samples, 15433 expressed genes are in common, 815 
genes only expressed in SRX060175 and 888 genes only 
expressed in SRX060176. The results show that most of 
human genes expressed in the samples of smokers with 
and without lung cancer are the same.

Results 

Gene expression distribution 
	 We investigated the gene expression level distributions 
in the two samples of smokers without and with lung 
cancer. For these two samples of SRX060175 and 
SRX060176, there are 2,987 and 3,037 genes expressed 
at the range of 0.1-1 RPKM; 7,255 and 7,675 genes in 
the range of 1-10 RPKM; 4,706 and 4,445 genes at the 
range of 10-50 RPKM; 752 and 679 genes at the range 

of 50-100 RPKM; 548 and 485 genes are equal or greater 
than 100 RPKM (Table 1). As we can see that the majority 
of human genes in both smokers with and without lung 
cancer samples are expressed lower than 50 RPKM (92% 
for SRX060175 and 92.87% for SRX060176), and remain 
a small portion of human genes expressed at higher levels 
(Figure 1). 
	 We also calculated the minimum, lower quartile, 
median, mean, upper quartile and maximum gene 
expression values in these two samples (Table 1). The 
two highest expression level genes in SRX060175 
sample are TPT1 (7152.85 RPKM) and MALAT1 
(6681.13 RPKM); and MALAT1 (14326.9 RPKM) 
and TPT1 (7331.23 RPKM) for sample SRX060176. 
TPT1 is involved in calcium binding and microtubule 
stabilization and MALAT1 is associated with metastasis, 
and positively regulates cell motility via the transcriptional 
and/or post-transcriptional regulation of motility-related 
genes. We plotted the cumulative frequency of human 
gene expression levels in samples of smokers with and 
without lung cancer (Figure 2). We found that the curve 
of sample SRX060175 is almost above the one of sample 
SRX060176, suggesting that the most of human genes 
in smokers with lung cancer are expressed lower than 
smokers without lung cancer.

Table 1. Statistics of Gene Expression Level	
Sample    Minimum Lower  Median  Mean  Upper   Maximum
                                 quartile                        quartile

SRX060175	 0.1	 1.6	 5.75	 23.4	 16.92	 7152.85
SRX060176	 0.1	 1.56	 5.22	 22.41	 15.38	 14326.9

*Those genes with expression level lower than 0.1 RPKM 
were regarded as unexpressed					  

Figure 1. Gene Expression and Distribution of Smokers 
With and Without Lung Cancer

Figure 2. Cumulative Frequency of Gene Expression 
Levels for Smokers with and without Lung Cancer

Without 

With
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Table 2. Differentilly Expressed Genes Between 
Smokers with and Without Lung Cancer
Gene names    log2FoldChange       P-value   Adjusted P-value

ZNF319	 4.266149763	 1.57E-15	 2.71E-11
IL1B	 3.901762687	 2.52E-13	 2.18E-09
HBB	 -2.356397849	 7.15E-12	 4.12E-08
C1orf161	 1.858806437	 9.01E-10	 2.92E-06
FCGBP	 2.472613288	 7.64E-10	 2.92E-06
MUC5B	 1.88916265	 1.09E-09	 2.92E-06
SCGB3A1	 1.878350811	 1.18E-09	 2.92E-06
XKR9	 2.063198021	 7.77E-09	 1.68E-05
LOC643406	 1.600265714	 2.80E-07	 0.000484672
REXO1L1	 1.593950663	 2.63E-07	 0.000484672
HBA2	 -1.681075078	 8.58E-07	 0.001348971
CCL3	 1.944180128	 1.83E-06	 0.002632677
LMOD3	 -1.371161928	 3.35E-06	 0.00361775
LOC442293	 1.442990071	 2.98E-06	 0.00361775
SPC25	 1.814019793	 3.20E-06	 0.00361775
LPAL2	 1.697444741	 4.15E-06	 0.004226582
CAMK2N1	 1.681708887	 5.28E-06	 0.005073578
SDC4	 1.379587271	 7.45E-06	 0.006780726
HERC2P4	 1.426942678	 1.07E-05	 0.009254681
MALAT1	 1.231037835	 2.30E-05	 0.018983029
TMEM212	 1.295619039	 4.00E-05	 0.030723029
TNIP3	 1.50087345	 4.09E-05	 0.030723029
GPR109B	 -2.182816074	 5.86E-05	 0.039853493
LRRIQ1	 1.732550304	 5.99E-05	 0.039853493
MUC2	 1.2498093	 5.90E-05	 0.039853493
WDR3	 1.880201783	 9.87E-05	 0.063216619
SCGB1A1	 1.13039707	 0.000150812	 0.093163991

Figure 3. Differential Expression Between Smokers 
with and Without Lung Cancer. Plot is shown in the log2 
fold changes against the base means, the dots that colouring in 
red are represent those genes that significant (adjusted P-value 
<0.1) at 10% FDR

Differential expression analysis 
	 To further study the gene expression differences 
between smokers with and without lung cancers, we 
carry out differential expression analysis to find out those 
differentially expressed human genes between these two 
samples. For calculating the differentially expressed 
genes, we used the software of DESeq (Anders and Huber, 
2010) and chose its model of without any replicates. 
Using the threshold of adjusted P-value < 0.1, we found 
that 27 genes differentially expressed in smokers with 
lung cancer versus smokers without lung cancer, with 4 
down-regulated and 23 up-regulated (Figure 3 and Table 
2). 
	 About those differentially expressed genes, they have 
diverse functions and involved in different pathways. 
Several of those differentially expressed genes have 

important functions with lung, such as HBB and HBA2 
genes are involved in oxygen transport from the lung 
to the various peripheral tissues (Wajcman et al., 1992; 
Sanna et al., 1994); MALAT1 (metastasis associated 
lung adenocarcinoma transcript 1) is a large and 
infrequently spliced non-coding RNA, it is associated 
with metastasis and positively regulates cell motility 
while the transcriptional and/or post-transcriptional 
regulation of motility-related genes (Huang da, 2009; 
Tseng, 2009; Guo, 2010). Other differentially expressed 
genes are related with various functions, IL1B are 
involved in the inflammatory response, being identified 
as endogenous pyrogens; SPC25 Acts as a component of 
the essential kinetochore-associated NDC80 complex, 
which is required for chromosome segregation and spindle 
checkpoint activity; SDC4 is cell surface proteoglycan that 
bears heparan sulfate; MUC2 coats the epithelia of the 
intestines, airways, and other mucus membrane-containing 
organs and so on. We also carried out functional annotation 
clustering using DAVID (Huang da et al., 2009; Huang 
da, 2009; Guo, 2010; Geng Chen, 2011), but only three 
genes (MUC2, FCGBP, MUC5B) could clustered together 
and met the criterion that adjusted P-value <0.1.

Discussion

In this study, we investigated the gene expression 
differences between smokers with and without lung 
cancer with two transcriptome sequencing datasets 
downloaded from short read archive. We first estimated 
the gene expression levels between these two samples and 
found that the majority expressed genes of them are the 
same, indicating that the expression profile differences 
between smokers with and without lung cancer might be 
not the unique expressed genes but the subtle expression 
changes of the genes. Analyzed results also show that 
most of human genes are expressed at a low or moderate 
level in both two samples of smokers with and without 
lung cancers, remain a small portion of human genes 
expressed at extremely high levels. It suggests that lung 
cancer disease seems does not disturb the whole trends 
of gene expression distribution. To know more about the 
expression divergence between these two samples, we 
then inferred the differentially expressed genes between 
the smokers with and without lung cancer. Because there 
are no replicates of these two samples, we used stringent 
criteria to call the differential expression. Finally, 27 genes 
were found differentially expressed between smokers with 
and without lung cancer. Further analyses suggested that 
some of those differentially expressed genes have crucial 
functions in lung tissues but other differentially expressed 
genes are involved in diverse functional pathways. 

Genes coding for the secreted intestinal mucins MUC2 
has been mapped to chromosomes 11 (p15). Inactivation 
of Muc2 causes lung tumor formation with spontaneous 
progression to invasive carcinoma, and this occurs in the 
absence of the overt inflammatory response. The reduced 
representation of goblet cells is characteristic of many 
aberrant crypt foci (ACF) of both humans and rodents, 
which are considered early preneoplastic lesions (Velcich 
et al., 2002). MUC2 gene expression data support the 
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hypothesis that the reduction in these cells and, thus, 
reduction of the mucus they produce, plays a role in 
tumor formation. 

Tumors with increased expression of mucin genes 
tended to be associated with post-operative relapse, 
especially when MUC5B genes were overexpressed (p 
= 0.015). Tumors from smokers tended to have higher 
MUC5B and MUC5AC gene expression ratios than 
those of non-smokers (MUC5B: 1.71 vs. 0.76, p = 0.023 
and MUC5AC: 1.46 vs. 0.81, p = 0.040), and were more 
likely to overexpress much genes (52.9% of tumors from 
smokers vs. 23.1% of tumors from non-smokers had 
overexpression of mucin genes p = 0.039) (Yu et al., 1996). 
It is noteworthy that a high percentage of squamous-cell 
carcinomas also expressed mucin genes and proteins. This 
finding seems to validate “Yesner’s diagram”: lung cancers 
derived from the same pluripotent cells, and squamous-cell 
carcinoma may preserve their mucin-secretory potential.

IgG Fc binding protein (FcγBP) that binds the Fc 
portion of IgG molecules has been reported in mucin 
secreting cells in colon, small intestine, gall bladder, cystic 
duct, bronchus, sub mandibullar gland, cervix uteri, and 
in fluids secreted by these cells in human (O’Donovan 
et al., 2002). The FcγBP gene investigated in the study 
has potential as a genetic marker in lung cancer. In each 
of the malignant lung tumors tested the ratio of FcγBP 
mRNA expression (relative to normal tissue) was less 
than one, whereas in all the lung tumor and in three out 
of four of the hyperplastic nodules the ratio of FcγBP 
expression was greater than one. Measurement of FcγBP 
mRNA expression in lung tumors and surrounding normal 
tissues would thus have enabled us to predict the benign 
or malignant nature of these lung nodules.

Lung cancer is widely affecting the health of human 
and can lead to cancer-related death, it is vital to study 
the molecular mechanisms that causing lung cancer. 
RNA-Seq is now a more flexible and more accurate 
technology than gene microarrays to investigate the gene 
expression changes among those healthy and unhealthy 
lung tissues. It provides us great abilities to study the 
properties of human gene expressions and generate an 
unprecedented view of the human transcriptome. Our 
study shows that the transcriptome sequencing data from 
smokers with and without lung cancer provide us great 
opportunities to compare the gene expression profiles 
between these two samples. Therefore, the RNA-Seq 
technologies are very powerful to reveal the characteristics 
of the gene expressions and enable us to study the gene 
activities more comprehensively. Our results uncover 
some interesting phenomenon of the gene expression 
profiles between smokers with and without lung cancer. 
We believe that more and more intriguing findings will be 
reported with the progress in sequencing technologies and 
bioinformatics algorithms. These advances will definitely 
bring many benefits to the human cancer treatments.
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