DOI QR코드

DOI QR Code

Anti-Cell Proliferative Efficacy of Ferulic Acid Against 7, 12-dimethylbenz(a) Anthracene Induced Hamster Buccal Pouch Carcinogenesis

  • Prabhakar, M. Manoj (Department of Biochemistry and Biotechnology, Annamalai University) ;
  • Vasudevan, K. (Department of Zoology, Faculty of Science, Annamalai University) ;
  • Karthikeyan, S. (Department of Biochemistry and Biotechnology, Annamalai University) ;
  • Baskaran, N. (Department of Biochemistry and Biotechnology, Annamalai University) ;
  • Silvan, S. (Department of Biochemistry and Biotechnology, Annamalai University) ;
  • Manoharan, S. (Department of Biochemistry and Biotechnology, Annamalai University)
  • Published : 2012.10.31

Abstract

The present study was designed to explore the anti-cell proliferative efficacy of ferulic acid by analysing the expression pattern of cell proliferative markers, proliferating cellular nuclear antigen (PCNA) and cyclin D1, in the buccal mucosa of golden Syrian hamsters treated with 7,12-dimethylbenz(a)anthracene (DMBA). Oral squamous cell carcinomas developed in the buccal pouch of hamsters using topical application of 0.5% DMBA three times a week for 14 weeks. Immunohistochemical (PCNA) and RT-PCR (Cyclin D1) analysis revealed over expression of PCNA and cyclin D1 in the buccal mucosa of hamsters treated with DMBA alone (tumor bearing hamsters). Oral administration of ferulic acid at a dose of 40 mg/kg bw to hamsters treated with DMBA not only completely prevented the tumor formation but also down regulated the expression of PCNA and cyclin D1. The results of the present study thus suggests that ferulic acid might have inhibited tumor formation in the buccal mucosa of hamsters treated with DMBA through its anti-cell proliferative potential as evidenced by decreased expression of PCNA and cyclin D1.

Keywords

References

  1. Anselmi C, Centini M, Andreassi M, et al, (2004). Conformational analysis: a tool for the elucidation of the antioxidant properties of ferulic acid derivatives in membrane models. J Pharm Biomed Anal, 35, 1241-49. https://doi.org/10.1016/j.jpba.2004.04.008
  2. Balakrishnan S, Manoharan S, Alias LM, et al (2010). Effect of curcumin and ferulic acid on modulation of expression pattern of p53 nd bcl-2 proteins in 7,12-dimethylbenz[a] anthracene-induced hamster buccal pouch carcinogenesis. Indian J Biochem Biophys. 47, 7-12.
  3. Balakrishnan S, Menon VP, Manoharan S, et al (2008). Ferulic acid inhibits 7,12-dimethylbenz[a]anthracene induced hamster buccal pouch carcinogenesis. J Med Food, 11, 693-700. https://doi.org/10.1089/jmf.2007.0103
  4. Botti E, Spallone G, Moretti F, et al (2011). Developmental factor IRF6 exhibits tumor suppressor activity in squamous cell carcinomas. Proc Natl Acad Sci U S A, 108, 13710-5. https://doi.org/10.1073/pnas.1110931108
  5. Cao W, Feng Z, Cui Z, et al (2012). Up-regulation of enhancer of zeste homolog 2 is associated positively with Cyclin D1 overexpression and poor clinical outcome in head and neck squamous cell carcinoma. Cancer, 118, 2858-71. https://doi.org/10.1002/cncr.26575
  6. Gaur P, Mittal M, Mohanti BK, et al (2011). Functional genetic variants of TGF-${\beta}$1 and risk of tobacco-related oral carcinoma in high-risk Asian Indians. Oral Oncol, 47, 1117-21. https://doi.org/10.1016/j.oraloncology.2011.07.033
  7. Gazy I, Kupiec M (2012). The importance of being modified: PCNA modification and DNA damage response. Cell Cycle, 11, 2620-3. https://doi.org/10.4161/cc.20626
  8. Janicke B, Hegardt C, Krogh M, et al (2011). The antiproliferative effect of dietary fiber phenolic compounds ferulic acid and p-coumaric acid on the cell cycle of Caco-2 cells. Nutr Cancer, 63, , 611-22. https://doi.org/10.1080/01635581.2011.538486
  9. Jirawatnotai S, Hu Y, Livingston DM, et al (2012). Proteomic identification of a direct role for Cyclin d1 in DNA damage repair. Cancer Res, 72, 4289-93. https://doi.org/10.1158/0008-5472.CAN-11-3549
  10. Kato K, Kawashiri S, Yoshizawa K, et al (2011). Expression form of p53 and PCNA at the invasive front in oral squamous cell carcinoma: correlation with clinicopathological features and prognosis. J Oral Pathol Med, 10.1111/j.1600-0714.2011.01032.x. ??????
  11. Lee CH, Ali RH, Rouzbahman M, et al (2012). Cyclin D1 as a diagnostic immunomarker for endometrial stromal sarcoma with YWHAE-FAM22 rearrangement. Am J Surg Pathol, 36, 1562-70. https://doi.org/10.1097/PAS.0b013e31825fa931
  12. Li Y, Zhang S, Geng JX, et al (2012). Effects of the Cyclin D1 Polymorphism on Lung Cancer Risk - a Meta-analysis. Asian Pac J Cancer Prev, 13, 2325-8. https://doi.org/10.7314/APJCP.2012.13.5.2325
  13. Manoharan S, Sindhu G, Nirmal MR, et al (2011). Protective effect of berberine on expression pattern of apoptotic, cell proliferative, inflammatory and angiogenic markers during 7,12-dimethylbenz(a)anthracene induced hamster buccal pouch carcinogenesis. Pak J Biol Sci, 14, 918-32. https://doi.org/10.3923/pjbs.2011.918.932
  14. Mineta H, Miura K, Takebayashi S, et al (2000). Cyclin D1 overexpression correlates with poor prognosis in patients with tongue squamous cell carcinoma. Oral Oncol, 36, 194-8. https://doi.org/10.1016/S1368-8375(99)00078-0
  15. Misery L, Godard W, Hamzeh H, et al (2003). Malignant Langerhans cell tumor: a case with a favorable outcome associated with the absence of blood dendritic cell proliferation. J Am Acad Dermatol, 49, 527-9. https://doi.org/10.1067/S0190-9622(03)00450-X
  16. Nagini S (2009). Of humans and hamsters: the hamster buccal pouch carcinogenesis model as a paradigm for oral oncogenesis and chemoprevention. Anticancer Agents Med Chem, 9, 843-52. https://doi.org/10.2174/187152009789124619
  17. Nakagawa K, Yamamura K, Maeda S, et al (1994). Bcl-2 expression in epidermal keratinocytic diseases. Cancer, 74, 1720-4. https://doi.org/10.1002/1097-0142(19940915)74:6<1720::AID-CNCR2820740613>3.0.CO;2-T
  18. Palanimuthu D, Baskaran N, Silvan S, et al (2012). Lupeol, a bioactive triterpene, prevents tumor formation during 7,12-Dimethylbenz(a)anthracene induced oral carcinogenesis. Pathol Oncol Res,18, 1029-37. https://doi.org/10.1007/s12253-012-9541-9
  19. Pierce MC, Schwarz RA, Bhattar VS, et al (2012). Accuracy of in vivo multimodal optical imaging for detection of oral neoplasia. Cancer Prev Res (Phila), 5, 801-9. https://doi.org/10.1158/1940-6207.CAPR-11-0555
  20. Radoi L, Luce D (2012). A review of risk factors for oral cavity cancer: the importance of a standardized case definition. Community Dent Oral Epidemiol, doi: 10.1111/j.1600-0528.2012.00710.x.???
  21. Rukkumani R, Aruna K, Varma P S, et al (2004). Influence of ferulic acid on circulatory prooxidant anti-oxidant status during alcohol and PUFA induced toxicity. J Physiol Pharmacol, 55, 551-561.
  22. Seoane J, Varela-Centelles P, Tomás I, et al (2012). Continuing education in oral cancer prevention for dentists in Spain. J Dent Educ, 76, 1234-40.
  23. Sharma P, Saxena S, Aggarwal P (2010a). Trends in the epidemiology of oral squamous cell carcinoma in Western UP: an institutional study. Indian J Dent Res, 21, 316-9. https://doi.org/10.4103/0970-9290.70782
  24. Sharma SD, Katiyar SK (2010b). Dietary grape seed proanthocyanidins inhibit UVB-induced cyclooxygenase-2 expression and other inflammatory mediators in UVBexposed skin and skin tumors of SKH-1 hairless mice. Pharm Res, 27, 1092-102. https://doi.org/10.1007/s11095-010-0050-9
  25. Shen G, Xu C, Chen C, et al (2006). p53-independent G1 cell cycle arrest of human colon carcinoma cells HT-29 by sulforaphane is associated with induction of p21CIP1 and inhibition of expression of Cyclin D1. Cancer Chemother Pharmacol, 57, 317-27. https://doi.org/10.1007/s00280-005-0050-3
  26. Silvan S, Manoharan S, Baskaran S, et al (2011). Chemopreventive potential of apigenin in 7,12-dimethylbenz(a)anthracene induced experimental oral carcinogenesis. Eur J Pharm, 670, 571-7. https://doi.org/10.1016/j.ejphar.2011.09.179
  27. Stenner M, Demgensky A, Molls C, et al (2012). Prognostic value of proliferating cell nuclear antigen in parotid gland cancer. Eur Arch Otorhinolaryngol, 269, 1225-32. https://doi.org/10.1007/s00405-011-1740-6
  28. Tainer JA, McCammon JA, Ivanov I (2010). Recognition of the ring-opened state of proliferating cell nuclear antigen by replication factor C promotes eukaryotic clamp-loading. J Am Chem Soc, 132, 7372-8. https://doi.org/10.1021/ja100365x
  29. Tan Z, Wortman M, Dillehay KL, et al (2012). Small-molecule targeting of proliferating cell nuclear antigen chromatin association inhibits tumor cell growth. Mol Pharmacol, 81, 811-9. https://doi.org/10.1124/mol.112.077735
  30. Vinothkumar V, Manoharan S, Sindhu G, et al (2012). Geraniol modulates cell proliferation, apoptosis, inflammation, and angiogenesis during 7,12-dimethylbenz[a]anthraceneinduced hamster buccal pouch carcinogenesis. Mol Cell Biochem, 369, 17-25. https://doi.org/10.1007/s11010-012-1364-1
  31. Wang Y, Rao VK, Kok WK, et al (2012). SUMO Modification of stra13 is required for repression of cyclin D1 Expression and cellular growth arrest. PLoS One, 7, e43137. https://doi.org/10.1371/journal.pone.0043137
  32. Zhao Z, Moghadasian M H (2008). Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: a review. Food Chem, 10, 691-702.

Cited by

  1. Saffron Reduction of 7,12-Dimethylbenz[a]anthracene-induced Hamster Buccal Pouch Carcinogenesis vol.14, pp.2, 2013, https://doi.org/10.7314/APJCP.2013.14.2.951
  2. Ethyl Ferulate, a Component with Anti-Inflammatory Properties for Emulsion-Based Creams vol.19, pp.6, 2014, https://doi.org/10.3390/molecules19068124
  3. Coffee provides a natural multitarget pharmacopeia against the hallmarks of cancer vol.10, pp.6, 2015, https://doi.org/10.1007/s12263-015-0501-3
  4. prevents tumor formation in 7,12-dimethylbenz(a)anthracene-induced hamster buccal pouch carcinogenesis vol.34, pp.9, 2015, https://doi.org/10.1177/0960327114562033
  5. Ferulic acid prevents liver injury induced by Diosbulbin B and its mechanism vol.10, pp.5, 2016, https://doi.org/10.5582/bst.2016.01152
  6. Tumor Preventive Efficacy of Emodin in 7,12-Dimethylbenz[a]Anthracene-Induced Oral Carcinogenesis: a Histopathological and Biochemical Approach vol.24, pp.1, 2018, https://doi.org/10.1007/s12253-017-0205-7
  7. Common Beans and Their Non-Digestible Fraction: Cancer Inhibitory Activity—An Overview vol.2, pp.3, 2013, https://doi.org/10.3390/foods2030374