DOI QR코드

DOI QR Code

Stem Cells in Drug Screening for Neurodegenerative Disease

  • Kim, Hyun-Jung (Laboratory of Stem Cell and Molecular Pharmacology, College of Pharmacy, Chung-Ang University) ;
  • Jin, Chang-Yun (Laboratory of Stem Cell and Molecular Pharmacology, College of Pharmacy, Chung-Ang University)
  • Received : 2011.12.08
  • Accepted : 2012.01.25
  • Published : 2012.02.29

Abstract

Because the average human life span has recently increased, the number of patients who are diagnosed with neurodegenerative diseases has escalated. Recent advances in stem cell research have given us access to unlimited numbers of multi-potent or pluripotent cells for screening for new drugs for neurodegenerative diseases. Neural stem cells (NSCs) are a good model with which to screen effective drugs that increase neurogenesis. Recent technologies for human embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) can provide human cells that harbour specific neurodegenerative disease. This article discusses the use of NSCs, ESCs and iPSCs for neurodegenerative drug screening and toxicity evaluation. In addition, we introduce drugs or natural products that are recently identified to affect the stem cell fate to generate neurons or glia.

Keywords

References

  1. Kim HJ. Stem cell potential in Parkinson's disease and molecular factors for the generation of dopamine neurons. Biochim Biophys Acta. 2011;1812:1-11. https://doi.org/10.1016/j.bbadis.2010.08.006
  2. Jones JM, Thomson JA. Human embryonic stem cell technology. Semin Reprod Med. 2000;18:219-223. https://doi.org/10.1055/s-2000-12560
  3. Studer L, Tabar V, McKay RD. Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nat Neurosci. 1998;1:290-295. https://doi.org/10.1038/1105
  4. Sanchez-Pernaute R, Studer L, Bankiewicz KS, Major EO, McKay RD. In vitro generation and transplantation of precursor- derived human dopamine neurons. J Neurosci Res. 2001;65:284-288. https://doi.org/10.1002/jnr.1152
  5. Levy YS, Stroomza M, Melamed E, Offen D. Embryonic and adult stem cells as a source for cell therapy in Parkinson's disease. J Mol Neurosci. 2004;24:353-386. https://doi.org/10.1385/JMN:24:3:353
  6. Chen LW, Kuang F, Wei LC, Ding YX, Yung KK, Chan YS. Potential application of induced pluripotent stem cells in cell replacement therapy for Parkinson's disease. CNS Neurol Disord Drug Targets. 2011;10:449-458. https://doi.org/10.2174/187152711795563994
  7. Lindvall O, Kokaia Z. Stem cell therapy for human brain disorders. Kidney Int. 2005;68:1937-1939. https://doi.org/10.1111/j.1523-1755.2005.00623.x
  8. Germain N, Banda E, Grabel L. Embryonic stem cell neurogenesis and neural specification. J Cell Biochem. 2010;111:535-542. https://doi.org/10.1002/jcb.22747
  9. Fraichard A, Chassande O, Bilbaut G, Dehay C, Savatier P, Samarut J. In vitro differentiation of embryonic stem cells into glial cells and functional neurons. J Cell Sci. 1995;108:3181-3188.
  10. Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, Gepstein A, Livne E, Binah O, Itskovitz-Eldor J, Gepstein L. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest. 2001;108:407-414.
  11. Xu C, Police S, Rao N, Carpenter MK. Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res. 2002;91:501-508. https://doi.org/10.1161/01.RES.0000035254.80718.91
  12. Mummery C, Ward-van Oostwaard D, Doevendans P, Spijker R, van den Brink S, Hassink R, van der Heyden M, Opthof T, Pera M, de la Riviere AB, Passier R, Tertoolen L. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation. 2003;107:2733-2740. https://doi.org/10.1161/01.CIR.0000068356.38592.68
  13. Noguchi H. Production of pancreatic beta-cells from stem cells. Curr Diabetes Rev. 2010;6:184-190. https://doi.org/10.2174/157339910791162934
  14. Shi Y. Generation of functional insulin-producing cells from human embryonic stem cells in vitro. Methods Mol Biol. 2010;636:79-85.
  15. Chen C, Zhang Y, Sheng X, Huang C, Zang YQ. Differentiation of embryonic stem cells towards pancreatic progenitor cells and their transplantation into streptozotocin-induced diabetic mice. Cell Biol Int. 2008;32:456-461. https://doi.org/10.1016/j.cellbi.2007.12.017
  16. Yamamoto H, Quinn G, Asari A, Yamanokuchi H, Teratani T, Terada M, Ochiya T. Differentiation of embryonic stem cells into hepatocytes: biological functions and therapeutic application. Hepatology. 2003;37:983-993. https://doi.org/10.1053/jhep.2003.50202
  17. Teratani T, Yamamoto H, Aoyagi K, Sasaki H, Asari A, Quinn G, Sasaki H, Terada M, Ochiya T. Direct hepatic fate specification from mouse embryonic stem cells. Hepatology. 2005;41:836-846. https://doi.org/10.1002/hep.20629
  18. Van Haute L, De Block G, Liebaers I, Sermon K, De Rycke M. Generation of lung epithelial-like tissue from human embryonic stem cells. Respir Res. 2009;10:105. https://doi.org/10.1186/1465-9921-10-105
  19. Wang D, Haviland DL, Burns AR, Zsigmond E, Wetsel RA. A pure population of lung alveolar epithelial type II cells derived from human embryonic stem cells. Proc Natl Acad Sci USA. 2007;104:4449-4454. https://doi.org/10.1073/pnas.0700052104
  20. Yamamoto M, Tachibana T, Hashimoto H, Ishiwata I, Ishikawa H. The differentiation of early embryonic stem cells into adipocytes-like cells. Hum Cell. 2003;16:117-122. https://doi.org/10.1111/j.1749-0774.2003.tb00143.x
  21. Kim HJ, Rosenfeld MG. Epigenetic control of stem cell fate to neurons and glia. Arch Pharm Res. 2010;33:1467-1473. https://doi.org/10.1007/s12272-010-1001-z
  22. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145-1147. https://doi.org/10.1126/science.282.5391.1145
  23. Suemori H. Establishment and therapeutic use of human embryonic stem cell lines. Hum Cell. 2006;19:65-70. https://doi.org/10.1111/j.1749-0774.2006.00011.x
  24. Gepstein L. Derivation and potential applications of human embryonic stem cells. Circ Res. 2002;91:866-876. https://doi.org/10.1161/01.RES.0000041435.95082.84
  25. Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol. 2000;18:399-404. https://doi.org/10.1038/74447
  26. Pera MF, Reubinoff B, Trounson A. Human embryonic stem cells. J Cell Sci. 2000;113:5-10.
  27. Lim JM, Lee M, Lee EJ, Gong SP, Lee ST. Stem cell engineering: limitation, alternatives, and insight. Ann NY Acad Sci. 2011;1229:89-98. https://doi.org/10.1111/j.1749-6632.2011.06093.x
  28. Hyun I. The bioethics of stem cell research and therapy. J Clin Invest. 2010;120:71-75. https://doi.org/10.1172/JCI40435
  29. Tasso R, Pennesi G. When stem cells meet immunoregulation. Int Immunopharmacol. 2009;9:596-598. https://doi.org/10.1016/j.intimp.2009.01.014
  30. Cabrera CM, Cobo F, Nieto A, Concha A. Strategies for preventing immunologic rejection of transplanted human embryonic stem cells. Cytotherapy. 2006;8:517-518. https://doi.org/10.1080/14653240600944287
  31. Usas A, Maciulaitis J, Maciulaitis R, Jakuboniene N, Milasius A, Huard J. Skeletal muscle-derived stem cells: Implications for cell-mediated therapies. Medicina (Kaunas). 2011;47:469-479.
  32. Frati C, Savi M, Graiani G, Lagrasta C, Cavalli S, Prezioso L, Rossetti P, Mangiaracina C, Ferraro F, Madeddu D, Musso E, Stilli D, Rossini A, Falco A, Angelis AD, Rossi F, Urbanek K, Leri A, Kajstura J, Anversa P, Quaini E, Quaini F. Resident cardiac stem cells. Curr Pharm Des. 2011;17:3252-3257. https://doi.org/10.2174/138161211797904181
  33. Fuh E, Brinton TJ. Bone marrow stem cells for the treatment of ischemic heart disease: a clinical trial review. J Cardiovasc Transl Res. 2009;2:202-218. https://doi.org/10.1007/s12265-009-9095-8
  34. Chugh AR, Zuba-Surma EK, Dawn B. Bone marrow-derived mesenchymal stems cells and cardiac repair. Minerva Cardioangiol. 2009;57:185-202.
  35. Woo DH, Kim SK, Lim HJ, Heo J, Park HS, Kang GY, Kim SE, You HJ, Hoeppner DJ, Kim Y, Kwon H, Choi TH, Lee JH, Hong SH, Song KW, Ahn EK, Chenoweth JG, Tesar PJ, McKay RD, Kim JH. Direct and indirect contribution of human embryonic stem cell-derived hepatocyte-like cells to liver repair in mice. Gastroenterology. http://dx.doi.org/10.1053/j.gastro.2011.11.030.
  36. Turner R, Lozoya O, Wang Y, Cardinale V, Gaudio E, Alpini G, Mendel G, Wauthier E, Barbier C, Alvaro D, Reid LM. Human hepatic stem cell and maturational liver lineage biology. Hepatology. 2011;53:1035-1045. https://doi.org/10.1002/hep.24157
  37. Grisar JC, Haddad F, Gomari FA, Wu JC. Endothelial progenitor cells in cardiovascular disease and chronic inflammation: from biomarker to therapeutic agent. Biomark Med. 2011;5:731-744. https://doi.org/10.2217/bmm.11.92
  38. Gage FH. Mammalian neural stem cells. Science. 2000;287:1433-1438. https://doi.org/10.1126/science.287.5457.1433
  39. Kim HJ, McMillan E, Han F, Svendsen CN. Regionally specified human neural progenitor cells derived from the mesencephalon and forebrain undergo increased neurogenesis following overexpression of ASCL1. Stem Cells. 2009;27:390-398. https://doi.org/10.1634/stemcells.2007-1047
  40. Kim HJ, Sugimori M, Nakafuku M, Svendsen CN. Control of neurogenesis and tyrosine hydroxylase expression in neural progenitor cells through bHLH proteins and Nurr1. Exp Neurol. 2007;203:394-405. https://doi.org/10.1016/j.expneurol.2006.08.029
  41. Holowacz T, Huelsken J, Dufort D, van der Kooy D. Neural stem cells are increased after loss of ${\beta}$-catenin, but neural progenitors undergo cell death. Eur J Neurosci. 2011;33:1366-1375. https://doi.org/10.1111/j.1460-9568.2011.07632.x
  42. Hsu YC, Lee DC, Chiu IM. Neural stem cells, neural progenitors, and neurotrophic factors. Cell Transplant. 2007;16:133-150.
  43. Jepsen K, Solum D, Zhou T, McEvilly RJ, Kim HJ, Glass CK, Hermanson O, Rosenfeld MG. SMRT-mediated repression of an H3K27 demethylase in progression from neural stem cell to neuron. Nature. 2007;450:415-419. https://doi.org/10.1038/nature06270
  44. Abematsu M, Smith I, Nakashima K. Mechanisms of neural stem cell fate determination: extracellular cues and intracellular programs. Curr Stem Cell Res Ther. 2006;1:267-277. https://doi.org/10.2174/157488806776956887
  45. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663-676. https://doi.org/10.1016/j.cell.2006.07.024
  46. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861-872. https://doi.org/10.1016/j.cell.2007.11.019
  47. Kim JB, Zaehres H, Wu G, Gentile L, Ko K, Sebastiano V, Arauzo-Bravo MJ, Ruau D, Han DW, Zenke M, Scholer HR. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature. 2008;454:646-650. https://doi.org/10.1038/nature07061
  48. Liao J, Wu Z, Wang Y, Cheng L, Cui C, Gao Y, Chen T, Rao L, Chen S, Jia N, Dai H, Xin S, Kang J, Pei G, Xiao L. Enhanced efficiency of generating induced pluripotent stem (iPS) cells from human somatic cells by a combination of six transcription factors. Cell Res. 2008;18:600-603. https://doi.org/10.1038/cr.2008.51
  49. Durnaoglu S, Genc S, Genc K. Patient-specific pluripotent stem cells in neurological diseases. Stem Cells Int. 2011;2011:212487.
  50. Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak A, Cooper O, Mitalipova M, Isacson O, Jaenisch R. Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell. 2009;136:964-977. https://doi.org/10.1016/j.cell.2009.02.013
  51. Saporta MA, Grskovic M, Dimos JT. Induced pluripotent stem cells in the study of neurological diseases. Stem Cell Res Ther. 2011;2:37. https://doi.org/10.1186/scrt78
  52. Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R, Wichterle H, Henderson CE, Eggan K. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science. 2008;321:1218-1221. https://doi.org/10.1126/science.1158799
  53. Ebert AD, Yu J, Rose FF Jr, Mattis VB, Lorson CL, Thomson JA, Svendsen CN. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature. 2009;457:277-280. https://doi.org/10.1038/nature07677
  54. Ebert AD, Svendsen CN. Human stem cells and drug screening: opportunities and challenges. Nat Rev Drug Discov. 2010; 9:367-372. https://doi.org/10.1038/nrd3000
  55. Lian Q, Chow Y, Esteban MA, Pei D, Tse HF. Future perspective of induced pluripotent stem cells for diagnosis, drug screening and treatment of human diseases. Thromb Haemost. 2010;104:39-44. https://doi.org/10.1160/TH10-05-0269
  56. Maury Y, Gauthier M, Peschanski M, Martinat C. Human pluripotent stem cells for disease modelling and drug screening. Bioessays. 2012;34:61-71. https://doi.org/10.1002/bies.201100071
  57. Rowntree RK, McNeish JD. Induced pluripotent stem cells: opportunities as research and development tools in 21st century drug discovery. Regen Med. 2010;5:557-568. https://doi.org/10.2217/rme.10.36
  58. Trosko JE, Chang CC. Factors to consider in the use of stem cells for pharmaceutic drug development and for chemical safety assessment. Toxicology. 2010;270:18-34. https://doi.org/10.1016/j.tox.2009.11.019
  59. Redmond DE Jr, Sladek JR, Spencer DD. Transplantation of embryonic dopamine neurons for severe Parkinson's disease. N Engl J Med. 2001;345:146-147. https://doi.org/10.1056/NEJM200107123450214
  60. Dunnett SB. Transplantation of embryonic dopamine neurons: what we know from rats. J Neurol. 1991;238:65-74. https://doi.org/10.1007/BF00315683
  61. Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, Dillon S, Winfield H, Culver S, Trojanowski JQ, Eidelberg D, Fahn S. Transplantation of embryonic dopamine neurons for severe Parkinson's disease. N Engl J Med. 2001;344:710-719. https://doi.org/10.1056/NEJM200103083441002
  62. Olanow CW, Freeman T, Kordower J. Transplantation of embryonic dopamine neurons for severe Parkinson's disease. N Engl J Med. 2001;345:146. https://doi.org/10.1056/NEJM200107123450214
  63. Visnyei K, Onodera H, Damoiseaux R, Saigusa K, Petrosyan S, De Vries D, Ferrari D, Saxe J, Panosyan EH, Masterman- Smith M, Mottahedeh J, Bradley KA, Huang J, Sabatti C, Nakano I, Kornblum HI. A molecular screening approach to identify and characterize inhibitors of glioblastoma stem cells. Mol Cancer Ther. 2011;10:1818-1828. https://doi.org/10.1158/1535-7163.MCT-11-0268
  64. Inamdar AA, Moore JC, Cohen RI, Bennett JW. A model to evaluate the cytotoxicity of the fungal volatile organic compound 1-octen-3-ol in human embryonic stem cells. Mycopathologia. 2012;173:13-20. https://doi.org/10.1007/s11046-011-9457-z
  65. Takahashi J, Palmer TD, Gage FH. Retinoic acid and neurotrophins collaborate to regulate neurogenesis in adultderived neural stem cell cultures. J Neurobiol. 1999;38:65-81. https://doi.org/10.1002/(SICI)1097-4695(199901)38:1<65::AID-NEU5>3.0.CO;2-Q
  66. Rohwedel J, Guan K, Wobus AM. Induction of cellular differentiation by retinoic acid in vitro. Cells Tissues Organs. 1999;165:190-202. https://doi.org/10.1159/000016699
  67. Kim HJ, Leeds P, Chuang DM. The HDAC inhibitor, sodium butyrate, stimulates neurogenesis in the ischemic brain. J Neurochem. 2009;110:1226-1240. https://doi.org/10.1111/j.1471-4159.2009.06212.x
  68. Yoo DY, Kim W, Nam SM, Kim DW, Chung JY, Choi SY, Yoon YS, Won MH, Hwang IK. Synergistic effects of sodium butyrate, a histone deacetylase inhibitor, on increase of neurogenesis induced by pyridoxine and increase of neural proliferation in the mouse dentate gyrus. Neurochem Res. 2011;36:1850-1857. https://doi.org/10.1007/s11064-011-0503-5
  69. Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH. Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci USA. 2004;101:16659-16664. https://doi.org/10.1073/pnas.0407643101
  70. Lennington JB, Yang Z, Conover JC. Neural stem cells and the regulation of adult neurogenesis. Reprod Biol Endocrinol. 2003;1:99. https://doi.org/10.1186/1477-7827-1-99
  71. Kuhn HG, Dickinson-Anson H, Gage FH. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci. 1996;16:2027-2033.
  72. Garcia-Verdugo JM, Doetsch F, Wichterle H, Lim DA, Alvarez-Buylla A. Architecture and cell types of the adult subventricular zone: in search of the stem cells. J Neurobiol. 1998;36:234-248. https://doi.org/10.1002/(SICI)1097-4695(199808)36:2<234::AID-NEU10>3.0.CO;2-E
  73. Pencea V, Bingaman KD, Freedman LJ, Luskin MB. Neurogenesis in the subventricular zone and rostral migratory stream of the neonatal and adult primate forebrain. Exp Neurol. 2001;172:1-16. https://doi.org/10.1006/exnr.2001.7768
  74. Rishton GM. Small molecules that promote neurogenesis in vitro. Recent Pat CNS Drug Discov. 2008;3:200-208. https://doi.org/10.2174/157488908786242425
  75. Taupin P. Neurogenic drugs and compounds. Recent Pat CNS Drug Discov. 2010;5:253-257. https://doi.org/10.2174/157488910793362377
  76. Malberg JE, Duman RS. Cell proliferation in adult hippocampus is decreased by inescapable stress: reversal by fluoxetine treatment. Neuropsychopharmacology. 2003;28:1562-1571. https://doi.org/10.1038/sj.npp.1300234
  77. Chadwick W, Mitchell N, Caroll J, Zhou Y, Park SS, Wang L, Becker KG, Zhang Y, Lehrmann E, Wood WH 3rd, Martin B, Maudsley S. Amitriptyline-mediated cognitive enhancement in aged $3{\times}Tg$ Alzheimer's disease mice is associated with neurogenesis and neurotrophic activity. PLoS One. 2011;6:e21660. https://doi.org/10.1371/journal.pone.0021660
  78. Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci. 2000;20:9104-9110.
  79. Boldrini M, Underwood MD, Hen R, Rosoklija GB, Dwork AJ, John Mann J, Arango V. Antidepressants increase neural progenitor cells in the human hippocampus. Neuropsychopharmacology. 2009;34:2376-2389. https://doi.org/10.1038/npp.2009.75
  80. Anacker C, Zunszain PA, Cattaneo A, Carvalho LA, Garabedian MJ, Thuret S, Price J, Pariante CM. Antidepressants increase human hippocampal neurogenesis by activating the glucocorticoid receptor. Mol Psychiatry. 2011;16:738-750. https://doi.org/10.1038/mp.2011.26
  81. Marcussen AB, Flagstad P, Kristjansen PE, Johansen FF, Englund U. Increase in neurogenesis and behavioural benefit after chronic fluoxetine treatment in Wistar rats. Acta Neurol Scand. 2008;117:94-100.
  82. Rozzini L, Chilovi BV, Conti M, Bertoletti E, Zanetti M, Trabucchi M, Padovani A. Efficacy of SSRIs on cognition of Alzheimer's disease patients treated with cholinesterase inhibitors. Int Psychogeriatr. 2010;22:114-119. https://doi.org/10.1017/S1041610209990184
  83. Encinas JM, Vaahtokari A, Enikolopov G. Fluoxetine targets early progenitor cells in the adult brain. Proc Natl Acad Sci USA. 2006;103:8233-8238. https://doi.org/10.1073/pnas.0601992103
  84. Ohira K, Miyakawa T. Chronic treatment with fluoxetine for more than 6 weeks decreases neurogenesis in the subventricular zone of adult mice. Mol Brain. 2011;4:10. https://doi.org/10.1186/1756-6606-4-10
  85. Peng ZW, Xue YY, Wang HN, Wang HH, Xue F, Kuang F, Wang BR, Chen YC, Zhang LY, Tan QR. Sertraline promotes hippocampus-derived neural stem cells differentiating into neurons but not glia and attenuates LPS-induced cellular damage. Prog Neuropsychopharmacol Biol Psychiatry. 2012; 36:183-188. https://doi.org/10.1016/j.pnpbp.2011.08.014
  86. Hellweg R, Ziegenhorn A, Heuser I, Deuschle M. Serum concentrations of nerve growth factor and brain-derived neurotrophic factor in depressed patients before and after antidepressant treatment. Pharmacopsychiatry. 2008;41:66-71. https://doi.org/10.1055/s-2007-1004594
  87. Boku S, Nakagawa S, Masuda T, Nishikawa H, Kato A, Toda H, Song N, Kitaichi Y, Inoue T, Koyama T. Effects of mood stabilizers on adult dentate gyrus-derived neural precursor cells. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35:111-117. https://doi.org/10.1016/j.pnpbp.2010.09.019
  88. Hanson ND, Nemeroff CB, Owens MJ. Lithium, but not fluoxetine or the corticotropin-releasing factor receptor 1 receptor antagonist R121919, increases cell proliferation in the adult dentate gyrus. J Pharmacol Exp Ther. 2011;337:180-186. https://doi.org/10.1124/jpet.110.175372
  89. Fiorentini A, Rosi MC, Grossi C, Luccarini I, Casamenti F. Lithium improves hippocampal neurogenesis, neuropathology and cognitive functions in APP mutant mice. PLoS One. 2010;5:e14382. https://doi.org/10.1371/journal.pone.0014382
  90. Hao Y, Creson T, Zhang L, Li P, Du F, Yuan P, Gould TD, Manji HK, Chen G. Mood stabilizer valproate promotes ERK pathway-dependent cortical neuronal growth and neurogenesis. J Neurosci. 2004;24:6590-6599. https://doi.org/10.1523/JNEUROSCI.5747-03.2004
  91. Laeng P, Pitts RL, Lemire AL, Drabik CE, Weiner A, Tang H, Thyagarajan R, Mallon BS, Altar CA. The mood stabilizer valproic acid stimulates GABA neurogenesis from rat forebrain stem cells. J Neurochem. 2004;91:238-251. https://doi.org/10.1111/j.1471-4159.2004.02725.x
  92. Jung GA, Yoon JY, Moon BS, Yang DH, Kim HY, Lee SH, Bryja V, Arenas E, Choi KY. Valproic acid induces differentiation and inhibition of proliferation in neural progenitor cells via the beta-catenin-Ras-ERK-p21Cip/WAF1 pathway. BMC Cell Biol. 2008;9:66. https://doi.org/10.1186/1471-2121-9-66
  93. Go HS, Seo JE, Kim KC, Han SM, Kim P, Kang YS, Han SH, Shin CY, Ko KH. Valproic acid inhibits neural progenitor cell death by activation of NF-${\kappa}B$ signaling pathway and upregulation of Bcl-XL. J Biomed Sci. 2011;18:48. https://doi.org/10.1186/1423-0127-18-48
  94. Wurdak H, Zhu S, Min KH, Aimone L, Lairson LL, Watson J, Chopiuk G, Demas J, Charette B, Halder R, Weerapana E, Cravatt BF, Cline HT, Peters EC, Zhang J, Walker JR, Wu C, Chang J, Tuntland T, Cho CY, Schultz PG. A small molecule accelerates neuronal differentiation in the adult rat. Proc Natl Acad Sci USA. 2010;107:16542-16547. https://doi.org/10.1073/pnas.1010300107
  95. Chang DJ, Jeong MY, Song J, Jin CY, Suh YG, Kim HJ, Min KH. Discovery of small molecules that enhance astrocyte differentiation in rat fetal neural stem cells. Bioorg Med Chem Lett. 2011;21:7050-7053. https://doi.org/10.1016/j.bmcl.2011.09.099
  96. Saxe JP, Wu H, Kelly TK, Phelps ME, Sun YE, Kornblum HI, Huang J. A phenotypic small-molecule screen identifies an orphan ligand-receptor pair that regulates neural stem cell differentiation. Chem Biol. 2007;14:1019-1030. https://doi.org/10.1016/j.chembiol.2007.07.016
  97. Pieper AA, Xie S, Capota E, Estill SJ, Zhong J, Long JM, Becker GL, Huntington P, Goldman SE, Shen CH, Capota M, Britt JK, Kotti T, Ure K, Brat DJ, Williams NS, MacMillan KS, Naidoo J, Melito L, Hsieh J, De Brabander J, Ready JM, McKnight SL. Discovery of a proneurogenic, neuroprotective chemical. Cell. 2010;142:39-51. https://doi.org/10.1016/j.cell.2010.06.018
  98. Lu D, Qu C, Goussev A, Jiang H, Lu C, Schallert T, Mahmood A, Chen J, Li Y, Chopp M. Statins increase neurogenesis in the dentate gyrus, reduce delayed neuronal death in the hippocampal CA3 region, and improve spatial learning in rat after traumatic brain injury. J Neurotrauma. 2007;24:1132-1146. https://doi.org/10.1089/neu.2007.0288
  99. Lu D, Goussev A, Chen J, Pannu P, Li Y, Mahmood A, Chopp M. Atorvastatin reduces neurological deficit and increases synaptogenesis, angiogenesis, and neuronal survival in rats subjected to traumatic brain injury. J Neurotrauma. 2004;21:21-32. https://doi.org/10.1089/089771504772695913
  100. Kong PJ, Kim YM, Lee HJ, Kim SS, Yoo ES, Chun W. Neuroprotective effects of methanol extracts of Jeju native plants on hydrogen peroxide-induced cytotoxicity in SH-SY5Y human neuroblastoma Cells. Korean J Physiol Pharmacol. 2007;11:170-174.
  101. Kwon MS, Lee JK, Park SH, Sim YB, Jung JS, Won MH, Kim SM, Suh HW. Neuroprotective effect of visnagin on kainic acid-induced neuronal cell death in the mice hippocampus. Korean J Physiol Pharmacol. 2010;14:257-263. https://doi.org/10.4196/kjpp.2010.14.5.257
  102. Chae HS, Kang YK, Shin YK, Lee HJ, Yu JI, Lee KG, Yeo JH, Kim YS, Sohn DS, Kim KY, Lee WB, Lee SH, Kim SS. The role of BF-7 on neuroprotection and enhancement of cognitive function. Korean J Physiol Pharmacol. 2004;8:173-179.
  103. Park HJ, Shim HS, Kim H, Kim KS, Lee H, Hahm DH, Shim I. Effects of glycyrrhizae radix on repeated restraint stressinduced neurochemical and behavioral responses. Korean J Physiol Pharmacol. 2010;14:371-376. https://doi.org/10.4196/kjpp.2010.14.6.371
  104. Weng MS, Liao CH, Yu SY, Lin JK. Garcinol promotes neurogenesis in rat cortical progenitor cells through the duration of extracellular signal-regulated kinase signaling. J Agric Food Chem. 2011;59:1031-1040. https://doi.org/10.1021/jf104263s
  105. Liu JW, Tian SJ, de Barry J, Luu B. Panaxadiol glycosides that induce neuronal differentiation in neurosphere stem cells. J Nat Prod. 2007;70:1329-1334. https://doi.org/10.1021/np070135j
  106. de Sampaio e Spohr TC, Stipursky J, Sasaki AC, Barbosa PR, Martins V, Benjamim CF, Roque NF, Costa SL, Gomes FC. Effects of the flavonoid casticin from Brazilian Croton betulaster in cerebral cortical progenitors in vitro: direct and indirect action through astrocytes. J Neurosci Res. 2010;88:530-541.
  107. Cho JY, Kon PJ, Chun W, Moon YO, Park YT, Lim SY, Kim SS. Curcumin attenuates glial cell activation but cannot suppress hippocampal CA3 neuronal cell death in i.c.v. kanic acid injection model. Korean J Physiol Pharmacol. 2003;7:307-310.
  108. Kim SJ, Son TG, Park HR, Park M, Kim MS, Kim HS, Chung HY, Mattson MP, Lee J. Curcumin stimulates proliferation of embryonic neural progenitor cells and neurogenesis in the adult hippocampus. J Biol Chem. 2008;283:14497-14505. https://doi.org/10.1074/jbc.M708373200
  109. Yoo DY, Kim W, Yoo KY, Lee CH, Choi JH, Kang IJ, Yoon YS, Kim DW, Won MH, Hwang IK. Effects of Nelumbo nucifera rhizome extract on cell proliferation and neuroblast differentiation in the hippocampal dentate gyrus in a scopolamine- induced amnesia animal model. Phytother Res. 2011; 25:809-815. https://doi.org/10.1002/ptr.3337
  110. Yang WM, Shim KJ, Choi MJ, Park SY, Choi BJ, Chang MS, Park SK. Novel effects of Nelumbo nucifera rhizome extract on memory and neurogenesis in the dentate gyrus of the rat hippocampus. Neurosci Lett. 2008;443:104-107. https://doi.org/10.1016/j.neulet.2008.07.020
  111. Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, Daley GQ. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 2008;451:141-146. https://doi.org/10.1038/nature06534
  112. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917-1920. https://doi.org/10.1126/science.1151526
  113. Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C, Hochedlinger K, Daley GQ. Disease-specific induced pluripotent stem cells. Cell. 2008; 134:877-886. https://doi.org/10.1016/j.cell.2008.07.041
  114. Soldner F, Laganiere J, Cheng AW, Hockemeyer D, Gao Q, Alagappan R, Khurana V, Golbe LI, Myers RH, Lindquist S, Zhang L, Guschin D, Fong LK, Vu BJ, Meng X, Urnov FD, Rebar EJ, Gregory PD, Zhang HS, Jaenisch R. Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell. 2011;146:318-331. https://doi.org/10.1016/j.cell.2011.06.019
  115. Liu GH, Suzuki K, Qu J, Sancho-Martinez I, Yi F, Li M, Kumar S, Nivet E, Kim J, Soligalla RD, Dubova I, Goebl A, Plongthongkum N, Fung HL, Zhang K, Loring JF, Laurent LC, Izpisua Belmonte JC. Targeted gene correction of laminopathy-associated LMNA mutations in patient-specific iPSCs. Cell Stem Cell. 2011;8:688-694. https://doi.org/10.1016/j.stem.2011.04.019

Cited by

  1. Antidepressants for neuro-regeneration: from depression to Alzheimer’s disease vol.36, pp.11, 2013, https://doi.org/10.1007/s12272-013-0238-8
  2. Kuwanon V Inhibits Proliferation, Promotes Cell Survival and Increases Neurogenesis of Neural Stem Cells vol.10, pp.2, 2015, https://doi.org/10.1371/journal.pone.0118188
  3. An Aminopropyl Carbazole Derivative Induces Neurogenesis by Increasing Final Cell Division in Neural Stem Cells vol.23, pp.4, 2015, https://doi.org/10.4062/biomolther.2015.016
  4. Cell density-dependent differential proliferation of neural stem cells on omnidirectional nanopore-arrayed surface vol.7, pp.None, 2012, https://doi.org/10.1038/s41598-017-13372-6
  5. Neural Stem Cell Differentiation Using Microfluidic Device-Generated Growth Factor Gradient vol.26, pp.4, 2018, https://doi.org/10.4062/biomolther.2018.001
  6. Regulation of Neural Stem Cell Fate by Natural Products vol.27, pp.1, 2012, https://doi.org/10.4062/biomolther.2018.184
  7. Differentiation of Human Embryonic Stem Cells into Neuron, Cholinergic, and Glial Cells vol.2020, pp.None, 2012, https://doi.org/10.1155/2020/8827874