DOI QR코드

DOI QR Code

Effects of Inositol 1,4,5-triphosphate on Osteoclast Differentiation in RANKL-induced Osteoclastogenesis

  • Son, A-Ran (Department of Oral Biology, College of Dentistry, Yonsei University) ;
  • Kim, Min-Seuk (Department of Oral Biology, College of Dentistry, Yonsei University) ;
  • Jo, Hae (AMWAY Korea, Technical Service Division) ;
  • Byun, Hae-Mi (Yuhan Reaserach Institute) ;
  • Shin, Dong-Min (Department of Oral Biology, College of Dentistry, Yonsei University)
  • Received : 2011.10.27
  • Accepted : 2012.01.10
  • Published : 2012.02.29

Abstract

The receptor activator of NF-${\kappa}B$ ligand (RANKL) signal is an activator of tumor necrosis factor receptor-associated factor 6 (TRAF6), which leads to the activation of NF-${\kappa}B$ and other signal transduction pathways essential for osteoclastogenesis, such as $Ca^{2+}$ signaling. However, the intracellular levels of inositol 1,4,5-trisphosphate ($IP_3$) and $IP_3$-mediated cellular function of RANKL during osteoclastogenesis are not known. In the present study, we determined the levels of $IP_3$ and evaluated $IP_3$-mediated osteoclast differentiation and osteoclast activity by RANKL treatment of mouse leukemic macrophage cells (RAW 264.7) and mouse bone marrow-derived monocyte/macrophage precursor cells (BMMs). During osteoclastogenesis, the expression levels of $Ca^{2+}$ signaling proteins such as $IP_3$ receptors ($IP_3Rs$), plasma membrane $Ca^{2+}$ ATPase, and sarco/endoplasmic reticulum $Ca^{2+}$ ATPase type2 did not change by RANKL treatment for up to 6 days in both cell types. At 24 h after RANKL treatment, a higher steady-state level of $IP_3$ was observed in RAW264.7 cells transfected with green fluorescent protein (GFP)-tagged pleckstrin homology (PH) domains of phospholipase C (PLC) ${\delta}$, a probe specifically detecting intracellular $IP_3$ levels. In BMMs, the inhibition of PLC with U73122 [a specific inhibitor of phospholipase C (PLC)[ and of $IP_3Rs$ with 2-aminoethoxydiphenyl borate (2APB; a non-specific inhibitor of $IP_3Rs$) inhibited the generation of RANKL-induced multinucleated cells and decreased the bone-resorption rate in dentin slice, respectively. These results suggest that intracellular $IP_3$ levels and the $IP_3$-mediated signaling pathway play an important role in RANKL-induced osteoclastogenesis.

Keywords

References

  1. Manolagas SC. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev. 2000;21:115-137. https://doi.org/10.1210/er.21.2.115
  2. Zaidi M. Skeletal remodeling in health and disease. Nat Med. 2007;13:791-801. https://doi.org/10.1038/nm1593
  3. Khosla S. Minireview: the OPG/RANKL/RANK system. Endocrinology. 2001;142:5050-5055. https://doi.org/10.1210/en.142.12.5050
  4. Kobayashi N, Kadono Y, Naito A, Matsumoto K, Yamamoto T, Tanaka S, Inoue J. Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis. EMBO J. 2001;20:1271-1280. https://doi.org/10.1093/emboj/20.6.1271
  5. Takayanagi H. Mechanistic insight into osteoclast differentiation in osteoimmunology. J Mol Med (Berl). 2005;83:170-179. https://doi.org/10.1007/s00109-004-0612-6
  6. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423:337-342. https://doi.org/10.1038/nature01658
  7. Ha H, Kwak HB, Lee SK, Na DS, Rudd CE, Lee ZH, Kim HH. Membrane rafts play a crucial role in receptor activator of nuclear factor kappaB signaling and osteoclast function. J Biol Chem. 2003;278:18573-18580. https://doi.org/10.1074/jbc.M212626200
  8. Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, Wagner EF, Mak TW, Kodama T, Taniguchi T. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell. 2002; 3:889-901. https://doi.org/10.1016/S1534-5807(02)00369-6
  9. Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 2003;4:517-529. https://doi.org/10.1038/nrm1155
  10. Koga T, Inui M, Inoue K, Kim S, Suematsu A, Kobayashi E, Iwata T, Ohnishi H, Matozaki T, Kodama T, Taniguchi T, Takayanagi H, Takai T. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature. 2004;428:758-763. https://doi.org/10.1038/nature02444
  11. Shin DM, Dehoff M, Luo X, Kang SH, Tu J, Nayak SK, Ross EM, Worley PF, Muallem S. Homer 2 tunes G protein-coupled receptors stimulus intensity by regulating RGS proteins and PLCbeta GAP activities. J Cell Biol. 2003;162:293-303. https://doi.org/10.1083/jcb.200210109
  12. Kiselyov K, Shin DM, Muallem S. Signalling specificity in GPCR-dependent $Ca^{2+}$ signalling. Cell Signal. 2003;15:243-253. https://doi.org/10.1016/S0898-6568(02)00074-8
  13. Uchiyama T, Yoshikawa F, Hishida A, Furuichi T, Mikoshiba K. A novel recombinant hyperaffinity inositol 1,4,5-trisphosphate (IP(3)) absorbent traps IP(3), resulting in specific inhibition of IP(3)-mediated calcium signaling. J Biol Chem. 2002;277:8106-8113. https://doi.org/10.1074/jbc.M108337200
  14. Tian YS, Jeong HJ, Lee SD, Kong SH, Ohk SH, Yoo YJ, Seo JT, Shin DM, Sohn BW, Lee SI. Hyperosmotic Stimulus Down-regulates 1alpha, 25-dihydroxyvitamin D(3)-induced Osteoclastogenesis by Suppressing the RANKL Expression in a Co-culture System. Korean J Physiol Pharmacol. 2010;14:169-176. https://doi.org/10.4196/kjpp.2010.14.3.169
  15. Kim MS, Yang YM, Son A, Tian YS, Lee SI, Kang SW, Muallem S, Shin DM. RANKL-mediated reactive oxygen species pathway that induces long lasting $Ca^{2+}$ oscillations essential for osteoclastogenesis. J Biol Chem. 2010;285:6913-6921. https://doi.org/10.1074/jbc.M109.051557
  16. Hirose K, Kadowaki S, Tanabe M, Takeshima H, Iino M. Spatiotemporal dynamics of inositol 1,4,5-trisphosphate that underlies complex $Ca^{2+}$ mobilization patterns. Science. 1999; 284:1527-1530. https://doi.org/10.1126/science.284.5419.1527
  17. Kuroda Y, Hisatsune C, Nakamura T, Matsuo K, Mikoshiba K. Osteoblasts induce $Ca^{2+}$ oscillation-independent NFATc1 activation during osteoclastogenesis. Proc Natl Acad Sci USA. 2008;105:8643-8648. https://doi.org/10.1073/pnas.0800642105
  18. van der Eerden BC, Hoenderop JG, de Vries TJ, Schoenmaker T, Buurman CJ, Uitterlinden AG, Pols HA, Bindels RJ, van Leeuwen JP. The epithelial $Ca^{2+}$ channel TRPV5 is essential for proper osteoclastic bone resorption. Proc Natl Acad Sci USA. 2005;102:17507-17512. https://doi.org/10.1073/pnas.0505789102
  19. Masuyama R, Vriens J, Voets T, Karashima Y, Owsianik G, Vennekens R, Lieben L, Torrekens S, Moermans K, Vanden Bosch A, Bouillon R, Nilius B, Carmeliet G. TRPV4-mediated calcium influx regulates terminal differentiation of osteoclasts. Cell Metab. 2008;8:257-265. https://doi.org/10.1016/j.cmet.2008.08.002

Cited by

  1. The role of the serum RANKL/OPG ratio in the healing of intertrochanteric fractures in elderly patients vol.7, pp.4, 2012, https://doi.org/10.3892/mmr.2013.1335
  2. Caffeic Acid Inhibited Receptor Activator of Nuclear Factor kappaB Ligand (RANKL)-Tumor Necrosis Factor (TNF) alpha-TNF Receptor Associated Factor (TRAF) 6 induced Osteoclastogenesis Pathway vol.5, pp.3, 2012, https://doi.org/10.18585/inabj.v5i3.68
  3. Fluid Flow-Induced Calcium Response in Osteoclasts: Signaling Pathways vol.42, pp.6, 2014, https://doi.org/10.1007/s10439-014-0984-x
  4. (5R)-5-Hydroxytriptolide (LLDT-8) inhibits osteoclastogenesis via RANKL/RANK/OPG signaling pathway vol.15, pp.None, 2012, https://doi.org/10.1186/s12906-015-0566-y
  5. Peucedanum japonicum Thunb. ethanol extract suppresses RANKL-mediated osteoclastogenesis vol.14, pp.1, 2012, https://doi.org/10.3892/etm.2017.4480
  6. Phospholipase Cγ Signaling in Bone Marrow Stem Cell and Relevant Natural Compounds Therapy vol.14, pp.None, 2019, https://doi.org/10.2174/1574888x14666191107103755
  7. Deficiencies of Homer2 and Homer3 accelerate aging-dependent bone loss in mice vol.45, pp.3, 2012, https://doi.org/10.11620/ijob.2020.45.3.126