DOI QR코드

DOI QR Code

A review of analytical method for volatile fatty acids as designated offensive odorants in Korea

악취성 유기지방산 성분의 분석기술

  • 안지원 (세종대학교 환경에너지융합학과) ;
  • 김용현 (세종대학교 환경에너지융합학과) ;
  • 김기현 (세종대학교 환경에너지융합학과) ;
  • 송희남 (에이스엔)
  • Received : 2012.02.14
  • Accepted : 2012.02.29
  • Published : 2012.04.25

Abstract

A list of volatile fatty acids (VFA) including propionic acid, butyric acid, isovaleric acid, valeric acid, etc. is well known for offensive odorants. The analysis of odorant VFA is a highly delicate task due to high reactivity and unstable recovery rate. At present, analytical methods of VFA are recommended to include alkali impregnation filter method and alkali absorption method by the malodor prevention law of the Korea Ministry of Environment (KMOE). In this review, a survey has been made to explore various approaches available for the analysis of VFA to include both official methods of the KMOE and others. In light of the unreliability of those established analytical methods, it is highly desirable to develop some substituting methods for VFA. Among such options, one may consider such option as sorbent tube (ST) sampling and cryogenic trapping-thermal desorption technique. Moreover, procedures used for standard preparation, sampling steps, and instrumental detection stage are also evaluated. Application of container sampling (like Tedlar bag) is however not recommendable due to significant (sorptive) loss in sampling and in storage stage. In the detection stage, the use of GC/MS is recommendable to replace GC/FID due to the presence of diverse interfering substances. Thus, it is essential to properly establish the basic quality assurance (QA) for VFA analysis in air.

2010년부터 지정악취물질로 관리 중인 유기지방산은 큰 반응성과 그에 따른 낮은 회수율 등의 문제로 인해, 분석이 난해한 성분으로 알려져 있다. 악취공정시험기준에서는 대기 중에 존재하는 유기지방산을 분석하는 방법으로 알칼리함침필터법과 알칼리흡수용액법을 제시하고 있다. 본 연구에서는 유기지방산의 분석기법을 전반적으로 비교검토하였다. 그러나 이들 지정분석방법에 대한 객관적인 검증이 쉽지않다는 점을 감안할 때, 유기지방산의 새로운 대안 분석방안으로 고체흡착관-저온농축탈착법 등을 고려할 필요가 있다. 고체흡착관으로 시료를 채취하고 저온농축열탈착기를 이용하여 분석할 경우, 공정시험기준상에 제시한 분석방법들에 비해 상당히 간편하고 검정이 용이하다는 이점이 있다. 본 연구에서는 이러한 분석방법에 대한 고찰에 덧붙여, 표준시료의 준비, 시료의 채취단계, 최종적인 검출단계에 대한 부분에 대해서도 검토하였다. 유기지방산의 현장시료를 채취 및 분석하기 위해서, 용기채취법의 적용은 심각한 오차를 수반할 수 있다는 점을 확인하였다. 또한 현장에서 채취한 시료의 유기지방산을 분석할 때, GC/FID에 의존할 경우, 여러 가지 간섭 성분의 영향을 배제하기 어렵다. 따라서 유기지방산의 분석에는 GC/MS를 이용하여 정량뿐 아니라 정성적인 부분까지 동시에 검토하는 것이 중요하다.

Keywords

References

  1. C.-J. Park, J. Korea Soc. Environ. Admin., 12(2), 95-103 (2006).
  2. Korea Ministry of Environment (KMOE), Malodor Prevention Law of Korea Ministry of Enviro. (2007).
  3. N. Narkis and S. Henfeld-Furie, Water Res., 12(7), 437-446 (1978). https://doi.org/10.1016/0043-1354(78)90149-5
  4. M. Abalos and J. M. Bayona, J. Chromatogr. A, 891, 287-294 (2000). https://doi.org/10.1016/S0021-9673(00)00655-5
  5. J. A. Cruwys, R. M. Dinsdale, F. R. Hawkes, and D. L. Hawkes, J. Chromatogr. A, 945, 195-209 (2002). https://doi.org/10.1016/S0021-9673(01)01514-X
  6. C. N. Sawyer, Perry L. McCarty, and Gene F. Parkin, 'Chemistry for Environmental Engineering and Science', 5th Ed., p231-232 and 689-698, McGraw-Hill, 2003.
  7. L. Spina, F. Cavallaro, N. I. Fardowza, P. Lagoussis, D. Bona, C. Ciscato, A. Rigante, and M. Vecchi, Digestive and Liver Disease Supplements, 1, 7-11 (2007). https://doi.org/10.1016/S1594-5804(08)60004-2
  8. P. Elefsiniotis and D. G. Wareham, Enzyme Microb. Tech., 41, 92-97(2007). https://doi.org/10.1016/j.enzmictec.2006.12.006
  9. L. Otten, M. T. Afzal and D. M. Mainville, Adv. Environ. Res., 8, 397-409 (2004). https://doi.org/10.1016/S1093-0191(02)00119-3
  10. N. Narkis, S. Henefeld-Fourrier and M. Rebhun, Water Res., 14(9), 1215-1223 (1980). https://doi.org/10.1016/0043-1354(80)90179-7
  11. G. Manni and F. Caron, J. Chromatogr. A, 690, 237-242 (1995). https://doi.org/10.1016/0021-9673(94)01081-O
  12. E. Lie and T. Welander, Water Res., 31(6) 1269-1274 (1997). https://doi.org/10.1016/S0043-1354(96)00092-9
  13. S.-I. Yun and Y. Ohta, Bioresource Technol., 96, 41-46 (2005). https://doi.org/10.1016/j.biortech.2004.03.006
  14. P. Elefsiniotis and D. G. Wareham, Enzyme. Microb. Tech., 41, 92-97 (2007). https://doi.org/10.1016/j.enzmictec.2006.12.006
  15. Y. Nagata, Japan MOE, 41(2), 17-25 (2003).
  16. P. M. G. Curioni and J.O. Bosset, Int. Dairy J., 12(12), 959-984 (2002). https://doi.org/10.1016/S0958-6946(02)00124-3
  17. K. Y. Kono, 'Malodor Preventive Law: Editorial Supervision for Special Pollution Section of Air Preservation Department if the Ministry of Environment in Japan', Gyousei Inc., 13-35, 1993.
  18. A. Bories, J.-M. Guillot, Y. Sire, M. Couderc, S.-A. Lemaire, V. Kreim and J.-C. Roux, Water Res., 41, 2987-2995 (2007). https://doi.org/10.1016/j.watres.2007.03.022
  19. G. W. Heo, Y.-M. You, S. M. Shin and J.-H. Lee, Korean J. Odor Research and Engin., 3(2), 88-98 (2004).
  20. Ministry of the Environment in Japan, (2000) Malodor Prevention law of Japan Ministry of Environment (2000).
  21. T.-K. Jung, M.-O. Jang, Y. R. Jung, M.-G. Kim and M.- D. Lee, Korean J. Odor Res. Eng., 6(2), 87-95 (2007).
  22. M.-R. Lee, J.-S. Lee, W.-S. Hsiang and C.-M. Chen, J. Chromatogr. A, 775, 267-274 (1997). https://doi.org/10.1016/S0021-9673(97)00306-3
  23. Environmental Protection Agency (EPA), U.S., (1999).
  24. R. R. Arnts, Atmos. Environ., 44, 1579-1584 (2010). https://doi.org/10.1016/j.atmosenv.2010.01.004
  25. J.-W. Ahn, K.-H. Kim, D.-W. Ju and M.-S. Im, Korean J. Anal. Sci. Technol., 24(3), 200-211 (2011). https://doi.org/10.5806/AST.2011.24.3.200
  26. J.-W. Ahn, O.-F. Hong, E.-H. Lee and K.-H. Kim, J. Korean Soc. Atmospheric Envi., 26(3), 305-317 (2010). https://doi.org/10.5572/KOSAE.2010.26.3.305
  27. J. Namiesnik, J. Chromatogr. A, 300, 79-108 (1984). https://doi.org/10.1016/S0021-9673(01)87581-6
  28. K. R. Lassey, C. F. Walker, A. M. S. McMillan and M. J. Ulyatt, Chemosphere, 3, 367-376 (2001).
  29. J. A. Neuman, T. B. Ryerson, L. G. Huey, R. Jakoubek, J. B. Nowak, C. Simons and F. C. Fehsenfeld, Environ. Sci. Technol., 37, 2975-2981 (2003). https://doi.org/10.1021/es026422l
  30. R. A. Washenfelder, C. M. Roehl, K. A. McKinney, R. R. Julian and P. O. Wennberg, Rev. Sci. Instrum., 74(6), 3151-3154 (2003). https://doi.org/10.1063/1.1570949
  31. T. J. Bruno, J. Chromatogr. A, 704, 157-162 (1995). https://doi.org/10.1016/0021-9673(95)00184-O
  32. J. Susaya, K.-H. Kim, J.-W. Cho and D. Parker, J. Chromatogr. A. 1218, 9328-9335 (2011). https://doi.org/10.1016/j.chroma.2011.11.007
  33. J.-W. Ahn, Unpublished Doctorate Thesis. Sejong Univ., Seoul Korea (2011).
  34. J.-B- Kim, T.-H. Kim, T.-H. Kim, D.-W. Ju and M.-S. Lim, Korean J. Odor Res. Eng., 7(4), 231-237 (2008).
  35. F. Ulberth and F. Schrammel, J. Chromatogr. A, 704(2), 455-463 (1995). https://doi.org/10.1016/0021-9673(95)00224-B
  36. J.-W. Ahn, K.-H. Kim, D.-W. Ju and M.-S. Lim, Korean J. Anal. Scie. Tech., 22(6), 488-497 (2009).

Cited by

  1. A critical review on the diverse preconcentration procedures on bag samples in the quantitation of volatile organic compounds from cigarette smoke and other combustion samples vol.85, 2016, https://doi.org/10.1016/j.trac.2016.08.013
  2. Degradation of Toluene and Acetic Acid Using Cell-Free Enzyme System from Single Cell-Strain vol.54, pp.5, 2016, https://doi.org/10.9713/kcer.2016.54.5.665
  3. Development of the Detection Threshold Concept from a Close Look at Sorption Occurrence Inside a Glass Vial Based on the In-Vial Vaporization of Semivolatile Fatty Acids vol.86, pp.13, 2014, https://doi.org/10.1021/ac501382e
  4. Test on the Reliability of Gastight Syringes as Transfer/Storage Media for Gaseous VOC Analysis: The Extent of VOC Sorption between the Inner Needle and a Glass Wall Surface vol.87, pp.5, 2015, https://doi.org/10.1021/ac504713y
  5. Extent of Sample Loss on the Sampling Device and the Resulting Experimental Biases When Collecting Volatile Fatty Acids (VFAs) in Air Using Sorbent Tubes vol.85, pp.16, 2013, https://doi.org/10.1021/ac401385m
  6. Emission characteristics of volatile organic compounds released from spray products vol.26, pp.4, 2013, https://doi.org/10.5806/AST.2013.26.4.268