DOI QR코드

DOI QR Code

Mechanical properties of bamboo-epoxy composites a structural application

  • Received : 2012.04.20
  • Accepted : 2012.08.17
  • Published : 2012.09.25

Abstract

In this study, the physical and mechanical properties of bamboo fiber reinforced epoxy composites were studied. Composites were fabricated using short bamboo fiber at four different fiber loading (0 wt%, 15 wt%, 30 wt% and 45 wt%). It has been observed that few properties increases significantly with respect to fiber loading, however properties like void fraction increases from 1.71% to 5.69% with the increase in fiber loading. Hence, in order to reduce the void fraction, improve hardness and other mechanical properties silicon carbide (SiC) filler is added in bamboo fiber reinforced epoxy composites at four different weight percentages (0 wt%, 5 wt%, 10 wt% and 15 wt%) by keeping fiber loading constant (45 wt%). The significant improvement of hardness (from 46 to 57 Hv) at 15 wt%SiC, tensile strength (from 10.48 to 13.44 MPa) at 10 wt% SiC, flexural strength (from 19.93 to 29.53 MPa) at 5 wt%SiC and reduction of void fraction (from 5.69 to 3.91%) at 5 wt%SiC is observed. The results of this study indicate that using particulate filled bamboo fiber reinforced epoxy composites could successfully develop a composite material in terms of high strength and rigidity for light weight applications compared to conventional bamboo composites. Finally, SEM studies were carried out to evaluate fibre/matrix interactions.

Keywords

References

  1. Biswas, S., Satapathy, A. and Patnaik, A. (2010), "Effect of ceramic fillers on mechanical properties of bamboo fiber reinforced epoxy composites: a comparative study", Adv. Mater. Res., 123-125, 1031-1034. https://doi.org/10.4028/www.scientific.net/AMR.123-125.1031
  2. Cazaurang-Martinez, M.N., Herrera-Franco, P.J., Gonzalez-Chi, P.I. and Aguilar-Vega, M. (1991), "Physical and mechanical properties of henequen fibers", J. Appl. Polym. Sci., 43(4), 749-756. https://doi.org/10.1002/app.1991.070430412
  3. Chen, X. (1996), "Bamboo fiber reinforced polypropylene composites: structure, morphology, and properties", Thesis (M.Phil.), Hong Kong University of Science and Technology.
  4. Chen, X., Guo, Q. and Mi, Y. (1998), "Bamboo fiber-reinforced polypropylene composites: A study of the mechanical properties", J. Appl. Polym. Sci., 69(10), 1891-1899. https://doi.org/10.1002/(SICI)1097-4628(19980906)69:10<1891::AID-APP1>3.0.CO;2-9
  5. Gowda, T.M., Naidu, A.C.B. and Chhaya, R. (1999), "Some mechanical properties of untreated jute fabricreinforced polyester composites", Compos. Part A-Appl. S., 30(3), 277-284. https://doi.org/10.1016/S1359-835X(98)00157-2
  6. Gupta, A., Kumar, A. and Patnaik, A. (2011b), "Surface morphology studies on cenosphere fly ash filled bamboo reinforced epoxy composites, National conference on recent trends in mechanical engineering (NCRTME-11)", Department of Mechanical Engineering, Lingaya's University Faridabad Haryana, India, 7- 8TH Sept., 273-277.
  7. Gupta, A., Kumar, A., Patnaik, A. and Biswas, S. (2011a), "Effect of different parameters on mechanical and erosion wear behavior of bamboo fiber reinforced epoxy composites", Int. J. Polym. Sci., doi:10.1155/2011/592906.
  8. Ismail, H., Edyham, M.R. and Wirjosentono, B. (2002), "Bamboo fibre filled natural rubber composites: the effects of filler loading and bonding agent", Polym. Test., 21(2), 139-144. https://doi.org/10.1016/S0142-9418(01)00060-5
  9. Kahraman, R., Abbasi, S. and Abu-Sharkh, B. (2005), "Influence of epolene G-3003 as a coupling agent on the mechanical behavior of palm fiber-polypropylene composites", Int. J. Polym. Mater., 54(6), 483-503. https://doi.org/10.1080/00914030390278293
  10. Karmaker, A.C. and Schneider, J.P. (1996), "Mechanical performance of short jute fiber reinforced polypropylene", J. Mater. Sci. Lett., 15(3), 201-202. https://doi.org/10.1007/BF00274450
  11. Kori, Y., Kitagawa, K. and Hamada, H. (2005), "Crystallization behavior and viscoelasticity of bamboo-fiber composites", J. Appl. Polym. Sci., 98(2), 603-612. https://doi.org/10.1002/app.22062
  12. Lee, S.H. and Wang, S. (2006), "Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent", Compos. Part A-Appl. S., 37(1), 80-91. https://doi.org/10.1016/j.compositesa.2005.04.015
  13. Mi, Y., Chen, X. and Guo, Q. (1997), "Bamboo fiber-reinforced polypropylene composites: Crystallization and interfacial morphology", J. Appl. Polym. Sci., 64(7), 1267-1273. https://doi.org/10.1002/(SICI)1097-4628(19970516)64:7<1267::AID-APP4>3.0.CO;2-H
  14. Nakamura, Y., Yamaguchi, M., Kitayama, A., Okubo, M. and Matsumoto, T. (1991a), "Effect of particle size on fracture toughness of epoxy resin filled with angular-shaped silica", Polymer, 32(12), 2221-2229. https://doi.org/10.1016/0032-3861(91)90050-S
  15. Nakamura, Y., Yamaguchi, M., Okubo, M. and Matsumoto, T. (1991b), "Effect of particle size on impact properties of epoxy resin filled with angular shaped silica particles", Polymer, 32(16), 2976-2979. https://doi.org/10.1016/0032-3861(91)90195-O
  16. Okubo, K., Fujii, T. and Yamamoto, Y. (2004), "Development of bamboo-based polymer composites and their mechanical properties", Compos. Part A-Appl. S., 35(3), 377-383. https://doi.org/10.1016/j.compositesa.2003.09.017
  17. Patnaik, A., Satapathy, A., Mahapatra, S.S. and Dash, R.R. (2009), "A comparative study on different ceramic fillers affecting mechanical properties of glass-polyester composites", J. Reinf. Plast. Comp., 28(11), 1305-1318. https://doi.org/10.1177/0731684407086589
  18. Srivastav, A.K., Behera, M.K. and Ray, B.C. (2007), "Loading rate sensitivity of jute/glass hybrid reinforced epoxy composites: effect of surface modifications", J. Reinf. Plast. Comp., 26(9), 851-860. https://doi.org/10.1177/0731684407076735
  19. Thwe, M.M. and Liao, K. (2000), "Characterization of bamboo-glass fiber reinforced polymer matrix hybrid composite", J. Mater. Sci. Lett., 19(20), 1873-1876. https://doi.org/10.1023/A:1006731531661
  20. Thwe, M.M. and Liao, K. (2002), "Effects of environmental aging on the mechanical properties of bamboo-glass fiber reinforced polymer matrix hybrid composites", Compos. Part A-Appl. S., 33(1), 43-52. https://doi.org/10.1016/S1359-835X(01)00071-9
  21. Yamamoto, I., Higashihara, T. and Kobayashi, T. (2003), "Effect of silica particle characteristics on impact/usual fatigue properties and evaluation of mechanical characteristics of silica-particle epoxy resins", JSME Int. J. ASolid M., 46(2), 145-153. https://doi.org/10.1299/jsmea.46.145
  22. Yang, H.S., Kim, H.J., Son, J., Park, H.J., Lee, B.J. and Hwang, T.S. (2004), "Rice-husk flour filled polypropylene composites; mechanical and morphological study", Compos. Struct., 63(3-4), 305-312. https://doi.org/10.1016/S0263-8223(03)00179-X
  23. Yao, W. and Li, Z. (2003), "Flexural behavior of bamboo-fiber-reinforced mortar laminates", Cement Concrete Res., 33(1), 15-19. https://doi.org/10.1016/S0008-8846(02)00909-2
  24. Zhao, Q., Tao, J., Yam, R.C.M., Mok, A.C.K., Li, R.K.Y. and Song, C. (2008), "Biodegradation behavior of polycaprolactone/rice husk eco-composites in simulated soil medium", Polym. Degrad. Stabil., 93(8), 1571-1576. https://doi.org/10.1016/j.polymdegradstab.2008.05.002

Cited by

  1. Absolute effective elastic constants of composite materials vol.57, pp.5, 2016, https://doi.org/10.12989/sem.2016.57.5.897
  2. Influence of fiber surface treatments on physico-mechanical behaviour of jute/epoxy composites impregnated with aluminium oxide filler vol.51, pp.28, 2017, https://doi.org/10.1177/0021998317695420
  3. Effect of cenosphere addition on the mechanical properties of jute-glass fiber hybrid epoxy composites vol.46, pp.1, 2016, https://doi.org/10.1177/1528083715577936