DOI QR코드

DOI QR Code

Viscoelastic behaviour of non-homogeneous variable-section beams with post-poned restraints

  • Alessandra, Fiore (Politecnico di Bari, Department of Civil and Environmental Engineering) ;
  • Monaco, Pietro (Politecnico di Bari, Department of Civil and Environmental Engineering) ;
  • Raffaele, Domenico (Politecnico di Bari, Department of Civil and Environmental Engineering)
  • Received : 2009.12.21
  • Accepted : 2011.10.04
  • Published : 2012.05.25

Abstract

The aim of this paper is to develop a procedure able to calculate the long-term stress and strain patterns in modern prestressed composite structures which are largely influenced by creep and shrinkage and whose final static configuration is the result of many phases of loading and restraints conditions. The introduction of equivalent moduli, depending on the viscous and elastic features of materials, can guarantee a significant simplification of the problem presented above. The proposed calculation model has been used to design the "Quattroquercie Viaduct" located on the highway "A3" Salerno-Reggio Calabria, Italy.

Keywords

References

  1. Bae, H.G., Oliva, M.G. and Bank, L.C. (2010), "Obtaining optimal performance with reinforcement-free concrete highway bridge decks", Eng. Struct., 32(8), 2300-2309. https://doi.org/10.1016/j.engstruct.2010.04.004
  2. Bazant, Z.P. (1972), "Prediction of concrete creep effects using age-adjusted effective modulus method", ACI J., 69(4), 212-217.
  3. Bazant, Z.P. (1995), "Creep and shrinkage prediction model for analysis and design of concrete structures - model B3", Mater. Struct., 28(6), 357-365. https://doi.org/10.1007/BF02473152
  4. Bazant, Z.P. (2000), "Structural stability", Int. J. Solids Struct., 37(1-2), 55-67. https://doi.org/10.1016/S0020-7683(99)00078-5
  5. Bazant, Z.P. (2001), "Prediction of concrete creep and shrinkage: past, present and future", Nucl. Eng. Des., 203(1), 27-38. https://doi.org/10.1016/S0029-5493(00)00299-5
  6. Bazant, Z.P. and Cedolin, L. (2003), Stability of structures. Elastic, Inelastic, Fracture and Damage Theories, Dover Publications, Inc., Mineola, New York, 584-632.
  7. CEB (1991), CEB-FIP Model Code 1990, CEB Bulletin d'Information N${^{\circ}}$ 203/205, Thomas Telford, London.
  8. CEB (1993), CEB-FIP Model Code 1990, CEB Bulletin d'Information N${^{\circ}}$ 215, Thomas Telford, London.
  9. Ceccoli, C, Mazzotti, C. and Savoia, M. (2000), "Analisi statistica per la validazione dei modelli di previsione delle deformazioni viscose del calcestruzzo", 13${^{\circ}}$ Congresso C.T.E., Pisa, 9-11 (in Italian).
  10. CEN (2001), "Eurocode 2. Design of concrete structures - Part 1: General rules and rules for buildings", EN 1992-1.
  11. Chiorino, M.A. (2005), "A rational approach to the analysis of creep structural effects", Shrinkage and Creep of Concrete, N. J. Gardner and J. Weiss Eds., ACI SP-227, 107-141.
  12. Dezi, L. and Tarantino, A.M. (1991), "Time-dependent analysis of concrete structures with variable structural system", ACI Mater. J., 88(3), 320-324.
  13. Dezi, L., Gara, F. and Leoni, G. (2006), "Construction sequence modelling of continuous steel-concrete composite bridge decks", Steel Compos. Struct., 6(2), 123-138. https://doi.org/10.12989/scs.2006.6.2.123
  14. Fiore, A. and Monaco, P. (2009), "POD-based representation of the alongwind equivalent static force for longspan bridges", Wind Struct., 12(3), 239-257. https://doi.org/10.12989/was.2009.12.3.239
  15. Fragiacomo, M., Amadio, C. and Macorini, L. (2004), "Finite-element model for collapse and long-term analysis of steel-concrete composite beams", J. Struct. Eng.-ASCE, 130(3), 489-497. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:3(489)
  16. Gara, F., Leoni, G. and Dezi, L. (2009), "A beam finite element including shear lag for the time-dependent analysis of steel-concrete composite decks", Eng. Struct., 31(8), 1888-1902. https://doi.org/10.1016/j.engstruct.2009.03.017
  17. Gardner, N.J. and Lockman, M.J. (2001), "Design provisions for drying shrinkage and creep of normal-strength concrete", ACI Mater. J., 98(2), 159-167.
  18. Ghali, A. (1989), "Stress and strain analysis in pre-stressed concrete: a critical review", PCI J., 34(6), 80-97
  19. Gilbert, R.I. (1988), Time effects in concrete structures, Elsevier.
  20. Gilbert, R.I. (1989), "Time-dependent analysis of composite steel-concrete sections", J. Struct. Eng., ASCE, 115(11), 2687-2705. https://doi.org/10.1061/(ASCE)0733-9445(1989)115:11(2687)
  21. Kwak, H.G. and Seo, Y.J. (2002), "Shrinkage cracking at interior supports of continuous pre-cast pre-stresse concrete girder bridges", Constr. Build. Mater., 16(1), 35-47. https://doi.org/10.1016/S0950-0618(01)00028-9
  22. Kwak, H.G., Seo, Y.J. and Jung, C.M. (2000), "Effects of the slab casting sequences and the drying shrinkage of concrete slabs on the short-term and long-term behaviour of composite steel box girder bridges", Eng. Struct., 22(11), 1453-1466. https://doi.org/10.1016/S0141-0296(99)00095-4
  23. Marì, A.R., Mirambell, E. and Estrada, I. (2003), "Effects of construction process and slab prestressing on the serviceability behaviour of composite bridges", J. Constr. Steel Res., 59(2), 135-163. https://doi.org/10.1016/S0143-974X(02)00029-9
  24. Mola, F. (1986), "Analisi generale in fase viscoelastica lineare di strutture e sezioni a comportamento reologico non omogeneo", Studi e Ricerche - Vol. 8, Graduate School in Concrete Structures, Fratelli Pesenti, Politecnico di Milano, Italy.
  25. Mola, F. (1988), "Studio del comportamento a lungo termine di strutture caratterizzate da disomogeneità reologiche distribuite lungo l'asse e nelle sezioni trasversali", Studi e Ricerche - Vol. 10, Graduate School in Concrete Structures, Fratelli Pesenti, Politecnico di Milano, Italy.
  26. Mola, F. (2000), "Gli effetti della viscosità nei ponti a travata continua. Evoluzione degli schemi strutturali", Atti del corso di aggiornamento sui ponti e viadotti, Politecnico di Milano, Pitagora ed., Bologna, (in Italian).
  27. Mola, F. and Giussani, F. (2003), "Service stage behaviour of composite bridges", Proceedings of the 3rd International Conference on New Dimensions in Bridges, Flyovers, Overpasses & Elevated Structures, 9-10, Malaysia.
  28. Neville, A.M., Dilger, W.H. and Brooks, J.J. (1983), Creep of plain and structural concrete, Construction Press, London.
  29. Petrangeli, M.P. (1993), Progettazione e Costruzione di Ponti, Masson Editoriale Esa, Italy.
  30. Pisani, M.A. (1994), "Numerical analysis of creep problems", Comput. Struct., 51(1), 57-63. https://doi.org/10.1016/0045-7949(94)90036-1
  31. Sassone, M. and Chiorino, M.A. (2005), "Design aids for the evaluation of creep induced structural effects", Shrinkage and Creep of Concrete, N. J. Gardner and J. Weiss Eds., ACI SP-227, 239-259.

Cited by

  1. Creep and shrinkage effects in service stresses of concrete cable-stayed bridges vol.13, pp.4, 2014, https://doi.org/10.12989/cac.2014.13.4.483
  2. Evolutionary Modeling to Evaluate the Shear Behavior of Circular Reinforced Concrete Columns vol.2014, 2014, https://doi.org/10.1155/2014/684256
  3. On the Fresh/Hardened Properties of Cement Composites Incorporating Rubber Particles from Recycled Tires vol.2014, 2014, https://doi.org/10.1155/2014/876158
  4. Modeling for fixed-end moments of I-sections with straight haunches under concentrated load vol.23, pp.5, 2012, https://doi.org/10.12989/scs.2017.23.5.597