References
- Bae, H.G., Oliva, M.G. and Bank, L.C. (2010), "Obtaining optimal performance with reinforcement-free concrete highway bridge decks", Eng. Struct., 32(8), 2300-2309. https://doi.org/10.1016/j.engstruct.2010.04.004
- Bazant, Z.P. (1972), "Prediction of concrete creep effects using age-adjusted effective modulus method", ACI J., 69(4), 212-217.
- Bazant, Z.P. (1995), "Creep and shrinkage prediction model for analysis and design of concrete structures - model B3", Mater. Struct., 28(6), 357-365. https://doi.org/10.1007/BF02473152
- Bazant, Z.P. (2000), "Structural stability", Int. J. Solids Struct., 37(1-2), 55-67. https://doi.org/10.1016/S0020-7683(99)00078-5
- Bazant, Z.P. (2001), "Prediction of concrete creep and shrinkage: past, present and future", Nucl. Eng. Des., 203(1), 27-38. https://doi.org/10.1016/S0029-5493(00)00299-5
- Bazant, Z.P. and Cedolin, L. (2003), Stability of structures. Elastic, Inelastic, Fracture and Damage Theories, Dover Publications, Inc., Mineola, New York, 584-632.
-
CEB (1991), CEB-FIP Model Code 1990, CEB Bulletin d'Information N
${^{\circ}}$ 203/205, Thomas Telford, London. -
CEB (1993), CEB-FIP Model Code 1990, CEB Bulletin d'Information N
${^{\circ}}$ 215, Thomas Telford, London. -
Ceccoli, C, Mazzotti, C. and Savoia, M. (2000), "Analisi statistica per la validazione dei modelli di previsione delle deformazioni viscose del calcestruzzo", 13
${^{\circ}}$ Congresso C.T.E., Pisa, 9-11 (in Italian). - CEN (2001), "Eurocode 2. Design of concrete structures - Part 1: General rules and rules for buildings", EN 1992-1.
- Chiorino, M.A. (2005), "A rational approach to the analysis of creep structural effects", Shrinkage and Creep of Concrete, N. J. Gardner and J. Weiss Eds., ACI SP-227, 107-141.
- Dezi, L. and Tarantino, A.M. (1991), "Time-dependent analysis of concrete structures with variable structural system", ACI Mater. J., 88(3), 320-324.
- Dezi, L., Gara, F. and Leoni, G. (2006), "Construction sequence modelling of continuous steel-concrete composite bridge decks", Steel Compos. Struct., 6(2), 123-138. https://doi.org/10.12989/scs.2006.6.2.123
- Fiore, A. and Monaco, P. (2009), "POD-based representation of the alongwind equivalent static force for longspan bridges", Wind Struct., 12(3), 239-257. https://doi.org/10.12989/was.2009.12.3.239
- Fragiacomo, M., Amadio, C. and Macorini, L. (2004), "Finite-element model for collapse and long-term analysis of steel-concrete composite beams", J. Struct. Eng.-ASCE, 130(3), 489-497. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:3(489)
- Gara, F., Leoni, G. and Dezi, L. (2009), "A beam finite element including shear lag for the time-dependent analysis of steel-concrete composite decks", Eng. Struct., 31(8), 1888-1902. https://doi.org/10.1016/j.engstruct.2009.03.017
- Gardner, N.J. and Lockman, M.J. (2001), "Design provisions for drying shrinkage and creep of normal-strength concrete", ACI Mater. J., 98(2), 159-167.
- Ghali, A. (1989), "Stress and strain analysis in pre-stressed concrete: a critical review", PCI J., 34(6), 80-97
- Gilbert, R.I. (1988), Time effects in concrete structures, Elsevier.
- Gilbert, R.I. (1989), "Time-dependent analysis of composite steel-concrete sections", J. Struct. Eng., ASCE, 115(11), 2687-2705. https://doi.org/10.1061/(ASCE)0733-9445(1989)115:11(2687)
- Kwak, H.G. and Seo, Y.J. (2002), "Shrinkage cracking at interior supports of continuous pre-cast pre-stresse concrete girder bridges", Constr. Build. Mater., 16(1), 35-47. https://doi.org/10.1016/S0950-0618(01)00028-9
- Kwak, H.G., Seo, Y.J. and Jung, C.M. (2000), "Effects of the slab casting sequences and the drying shrinkage of concrete slabs on the short-term and long-term behaviour of composite steel box girder bridges", Eng. Struct., 22(11), 1453-1466. https://doi.org/10.1016/S0141-0296(99)00095-4
- Marì, A.R., Mirambell, E. and Estrada, I. (2003), "Effects of construction process and slab prestressing on the serviceability behaviour of composite bridges", J. Constr. Steel Res., 59(2), 135-163. https://doi.org/10.1016/S0143-974X(02)00029-9
- Mola, F. (1986), "Analisi generale in fase viscoelastica lineare di strutture e sezioni a comportamento reologico non omogeneo", Studi e Ricerche - Vol. 8, Graduate School in Concrete Structures, Fratelli Pesenti, Politecnico di Milano, Italy.
- Mola, F. (1988), "Studio del comportamento a lungo termine di strutture caratterizzate da disomogeneità reologiche distribuite lungo l'asse e nelle sezioni trasversali", Studi e Ricerche - Vol. 10, Graduate School in Concrete Structures, Fratelli Pesenti, Politecnico di Milano, Italy.
- Mola, F. (2000), "Gli effetti della viscosità nei ponti a travata continua. Evoluzione degli schemi strutturali", Atti del corso di aggiornamento sui ponti e viadotti, Politecnico di Milano, Pitagora ed., Bologna, (in Italian).
- Mola, F. and Giussani, F. (2003), "Service stage behaviour of composite bridges", Proceedings of the 3rd International Conference on New Dimensions in Bridges, Flyovers, Overpasses & Elevated Structures, 9-10, Malaysia.
- Neville, A.M., Dilger, W.H. and Brooks, J.J. (1983), Creep of plain and structural concrete, Construction Press, London.
- Petrangeli, M.P. (1993), Progettazione e Costruzione di Ponti, Masson Editoriale Esa, Italy.
- Pisani, M.A. (1994), "Numerical analysis of creep problems", Comput. Struct., 51(1), 57-63. https://doi.org/10.1016/0045-7949(94)90036-1
- Sassone, M. and Chiorino, M.A. (2005), "Design aids for the evaluation of creep induced structural effects", Shrinkage and Creep of Concrete, N. J. Gardner and J. Weiss Eds., ACI SP-227, 239-259.
Cited by
- Creep and shrinkage effects in service stresses of concrete cable-stayed bridges vol.13, pp.4, 2014, https://doi.org/10.12989/cac.2014.13.4.483
- Evolutionary Modeling to Evaluate the Shear Behavior of Circular Reinforced Concrete Columns vol.2014, 2014, https://doi.org/10.1155/2014/684256
- On the Fresh/Hardened Properties of Cement Composites Incorporating Rubber Particles from Recycled Tires vol.2014, 2014, https://doi.org/10.1155/2014/876158
- Modeling for fixed-end moments of I-sections with straight haunches under concentrated load vol.23, pp.5, 2012, https://doi.org/10.12989/scs.2017.23.5.597