DOI QR코드

DOI QR Code

Standard Error of Empirical Bayes Estimate in NONMEM$^{(R)}$ VI

  • Kang, Dong-Woo (Pfizer Worldwide Biopharmaceutical Businesses) ;
  • Bae, Kyun-Seop (Asan Medical Center, University of Ulsan) ;
  • Houk, Brett E. (Pfizer Worldwide Biopharmaceutical Businesses) ;
  • Savic, Radojka M. (Uppsala University) ;
  • Karlsson, Mats O. (Uppsala University)
  • Received : 2011.12.29
  • Accepted : 2012.03.05
  • Published : 2012.04.30

Abstract

The pharmacokinetics/pharmacodynamics analysis software NONMEM$^{(R)}$ output provides model parameter estimates and associated standard errors. However, the standard error of empirical Bayes estimates of inter-subject variability is not available. A simple and direct method for estimating standard error of the empirical Bayes estimates of inter-subject variability using the NONMEM$^{(R)}$ VI internal matrix POSTV is developed and applied to several pharmacokinetic models using intensively or sparsely sampled data for demonstration and to evaluate performance. The computed standard error is in general similar to the results from other post-processing methods and the degree of difference, if any, depends on the employed estimation options.

Keywords

References

  1. Lacroix BD, Friberg LE, Karlsson MO. Evaluation of IPPSE, an alternative method for sequential population PKPD analysis. J Pharmacokinet Pharmacodyn. 2012;39:177-193. https://doi.org/10.1007/s10928-012-9240-x
  2. psn.sourceforge.net [Internet]. PsN: perl-speaks-NONMEM; ${\copyright}$2008 by Mats Karlsson, Niclas Jonsson and Andrew Hooker. [cited 2012 Feb 15]. Available from: http://psn.sourceforge.net.
  3. Beal SL, Sheiner LB, Boeckmann AJ (Eds.). NONMEM Users Guides - Part VII. Ellicott City, Maryland, USA.: Icon Development Solutions; 1989-2006.
  4. Wang Y. Derivation of various NONMEM estimation methods. J Pharmacokinet Pharmacodyn. 2007;34:575-593. https://doi.org/10.1007/s10928-007-9060-6
  5. Pawitan Y. In all likelihood: statistical modelling and inference using likelihood. New York: Oxford University Press.; 2001.
  6. D'Argenio DZ, Schumitzky A, Wang X. ADAPT 5 User' s Guide: Pharmacokinetic/Pharmacodynamic Systems Analysis Software. Los Angeles: Biomedical Simulations Resource; 2009.
  7. Savic RM, Karlsson MO. Importance of shrinkage in empirical bayes estimates for diagnostics: problems and solutions. AAPS J. 2009;11:558-569. https://doi.org/10.1208/s12248-009-9133-0
  8. Balram C, Lim BL, Lee EJ, Wong SY, Ang B. Validity of Bayesian forecasting programme in therapeutic drug monitoring of vancomycin in a surgical intensive care unit: a prospective evaluation. Ann Acad Med Singapore. 1996;25:492-495.
  9. el Desoky E, Meinshausen J, Buhl K, Engel G, Harings-Kaim A, Drewelow B, Klotz U. Generation of pharmacokinetic data during routine therapeutic drug monitoring: Bayesian approach vs. pharmacokinetic studies. Ther Drug Monit. 1993;15:281-288. https://doi.org/10.1097/00007691-199308000-00004
  10. Pons G, Treluyer JM, Dimet J, Merle Y. Potential benefit of Bayesian forecasting for therapeutic drug monitoring in neonates. Ther Drug Monit. 2002;24:9-14. https://doi.org/10.1097/00007691-200202000-00002
  11. Karlsson MO, Savic RM. Diagnosing model diagnostics. Clin Pharmacol Ther. 2007;82:17-20. https://doi.org/10.1038/sj.clpt.6100241
  12. Park K, Verotta D, Gupta SK, Sheiner LB. Use of a pharmacokinetic/pharmacodynamic model to design an optimal dose input profile. J Pharmacokinet Biopharm. 1998;26:471-492. https://doi.org/10.1023/A:1021068202606
  13. Ette EI, Williams PJ. Pharmacometrics - The Science of Quantitative Pharmacology. Hoboken, New Jersey: John Wiley & Sons, Inc.; 2007.

Cited by

  1. Inter occasion variability in individual optimal design vol.42, pp.6, 2012, https://doi.org/10.1007/s10928-015-9449-6
  2. R-based reproduction of the estimation process hidden behind NONMEM® Part 1: first-order approximation method vol.23, pp.1, 2012, https://doi.org/10.12793/tcp.2015.23.1.1
  3. R-based reproduction of the estimation process hidden behind NONMEM® Part 2: First-order conditional estimation vol.24, pp.4, 2012, https://doi.org/10.12793/tcp.2016.24.4.161
  4. Individualized Dosing Algorithms and Therapeutic Monitoring for Antiepileptic Drugs vol.103, pp.4, 2012, https://doi.org/10.1002/cpt.777
  5. Using a three-compartment model improves the estimation of iohexol clearance to assess glomerular filtration rate vol.8, pp.None, 2012, https://doi.org/10.1038/s41598-018-35989-x
  6. Application of Pharmacometrics in Pharmacotherapy: Open-Source Software for Vancomycin Therapeutic Drug Management vol.11, pp.5, 2012, https://doi.org/10.3390/pharmaceutics11050224
  7. Testing whether the progression of Alzheimer’s disease changes with the year of publication, additional design, and geographical area: a modeling analysis of literature aggregate data vol.12, pp.1, 2020, https://doi.org/10.1186/s13195-020-00630-5
  8. Easy and reliable maximum a posteriori Bayesian estimation of pharmacokinetic parameters with the open‐source R package mapbayr vol.10, pp.10, 2012, https://doi.org/10.1002/psp4.12689