DOI QR코드

DOI QR Code

Effect of $Agrimonia$ $pilosa$ $Ledeb$ Extract on the Antinociception and Mechanisms in Mouse

  • Park, Soo-Hyun (Institute of Natural Medicine, College of Medicine, Hallym University) ;
  • Sim, Yun-Beom (Institute of Natural Medicine, College of Medicine, Hallym University) ;
  • Kang, Yu-Jung (Institute of Natural Medicine, College of Medicine, Hallym University) ;
  • Lee, Jin-Koo (Department of Pharmacology, College of Medicine, Translational Research Center, Institute of Bio-Science and Technology, Dankook University) ;
  • Lim, Soon-Sung (Institute of Natural Medicine, College of Medicine, Hallym University) ;
  • Suh, Hong-Won (Institute of Natural Medicine, College of Medicine, Hallym University)
  • Received : 2011.01.07
  • Accepted : 2012.02.21
  • Published : 2012.04.30

Abstract

In the present study, the antinociceptive profiles of $Agrimonia$ $pilosa$ $Ledeb$ extract were examined in ICR mice. $Agrimonia$ $pilosa$ $Ledeb$ extract administered orally (200 mg/kg) showed an antinociceptive effect as measured by the tail-flick and hot-plate tests. In addition, $Agrimonia$ $pilosa$ $Ledeb$ extract attenuated the writhing numbers in the acetic acid-induced writhing test. Furthermore, the cumulative nociceptive response time for intrathecal (i.t.) injection of substance P (0.7 ${\mu}g$) was diminished by $Agrimonia$ $pilosa$ $Ledeb$ extract. Intraperitoneal (i.p.) pretreatment with yohimbine (${\alpha}_2$-adrenergic receptor antagonist) attenuated antinociceptive effect induced by $Agrimonia$ $pilosa$ $Ledeb$ extract in the writhing test. However, naloxone (opioid receptor antagonist) or methysergide (5-HT serotonergic receptor antagonist) did not affect antinociception induced by $Agrimonia$ $pilosa$ $Ledeb$ extract in the writhing test. Our results suggest that $Agrimonia$ $pilosa$ $Ledeb$ extract shows an antinociceptive property in various pain models. Furthermore, this antinociceptive effect of $Agrimonia$ $pilosa$ $Ledeb$ extract may be mediated by ${\alpha}_2$-adrenergic receptor, but not opioidergic and serotonergic receptors.

Keywords

References

  1. Talhouk RS, Karam C, Fostok S, El-Jouni W, Barbour EK. Anti-inflammatory bioactivities in plant extracts. J Med Food. 2007;10:1-10. https://doi.org/10.1089/jmf.2005.055
  2. Lee J, Bielory L. Complementary and alternative interventions in atopic dermatitis. Immunol Allergy Clin North Am. 2010;30:411-424. https://doi.org/10.1016/j.iac.2010.06.006
  3. Kato H, Li W, Koike M, Wang Y, Koike K. Phenolic glycosides from Agrimonia pilosa. Phytochemistry. 2010;71:1925-1929. https://doi.org/10.1016/j.phytochem.2010.08.007
  4. Koshiura R, Miyamoto K, Ikeya Y, Taguchi H. Antitumor activity of methanol extract from roots of Agrimonia pilosa Ledeb. Jpn J Pharmacol. 1985;38:9-16. https://doi.org/10.1254/jjp.38.9
  5. Miyamoto K, Kishi N, Koshiura R. Antitumor effect of agrimoniin, a tannin of Agrimonia pilosa Ledeb., on transplantable rodent tumors. Jpn J Pharmacol. 1987;43:187-195. https://doi.org/10.1254/jjp.43.187
  6. Li Y, Ooi LS, Wang H, But PP, Ooi VE. Antiviral activities of medicinal herbs traditionally used in southern mainland China. Phytother Res. 2004;18:718-722. https://doi.org/10.1002/ptr.1518
  7. Shin WJ, Lee KH, Park MH, Seong BL. Broad-spectrum antiviral effect of Agrimonia pilosa extract on influenza viruses. Microbiol Immunol. 2010;54:11-19. https://doi.org/10.1111/j.1348-0421.2009.00173.x
  8. Zhu L, Tan J, Wang B, He R, Liu Y, Zheng C. Antioxidant activities of aqueous extract from Agrimonia pilosa Ledeb and its fractions. Chem Biodivers. 2009;6:1716-1726. https://doi.org/10.1002/cbdv.200800248
  9. Yamaki M, Kashihara M, Ishiguro K, Takagi S. Antimicrobial Principles of Xian he cao (Agrimonia pilosa). Planta Med. 1989;55:169-170. https://doi.org/10.1055/s-2006-961915
  10. Jung CH, Zhou S, Ding GX, Kim JH, Hong MH, Shin YC, Kim GJ, Ko SG. Antihyperglycemic activity of herb extracts on streptozotocin-induced diabetic rats. Biosci Biotechnol Biochem. 2006;70:2556-2559. https://doi.org/10.1271/bbb.60238
  11. Jung CH, Kim JH, Park S, Kweon DH, Kim SH, Ko SG. Inhibitory effect of Agrimonia pilosa Ledeb. on inflammation by suppression of iNOS and ROS production. Immunol Invest. 2010;39:159-170. https://doi.org/10.3109/08820130903501790
  12. Bae H, Kim HJ, Shin M, Lee H, Yin CS, Ra J, Kim J. Inhibitory effect of Agrimoniae Herba on lipopolysaccharide-induced nitric oxide and proinflammatory cytokine production in BV2 microglial cells. Neurol Res. 2010;32 Suppl 1:53-57. https://doi.org/10.1179/016164109X12537002794002
  13. Hylden JL, Wilcox GL. Intrathecal morphine in mice: a new technique. Eur J Pharmacol. 1980;67:313-316. https://doi.org/10.1016/0014-2999(80)90515-4
  14. Hylden JL, Wilcox GL. Intrathecal substance P elicits a caudally-directed biting and scratching behavior in mice. Brain Res. 1981;217:212-215. https://doi.org/10.1016/0006-8993(81)90203-1
  15. D'Amour FE, Smith DL. A method for determining loss of pain sensation. J Pharmacol Exp Ther. 1941;72:74-79.
  16. Eddy NB, Leimbach D. Synthetic analgesics. II. Dithienylbutenyland dithienylbutylamines. J Pharmacol Exp Ther. 1953;107:385-393.
  17. Koster R, Anderson M, Beer EJ. Acetic acid for analgesic screening. Federal Proceeding. 1959;18:412.
  18. Choi SS, Han KJ, Lee JK, Lee HK, Han EJ, Kim DH, Suh HW. Antinociceptive mechanisms of orally administered decursinol in the mouse. Life Sci. 2003;73:471-485. https://doi.org/10.1016/S0024-3205(03)00311-4
  19. Park SH, Sim YB, Choi SM, Seo YJ, Kwon MS, Lee JK, Suh HW. Antinociceptive profiles and mechanisms of orally administered vanillin in the mice. Arch Pharm Res. 2009;32:1643-1649. https://doi.org/10.1007/s12272-009-2119-8
  20. Suh HW, Song DK, Son KH, Wie MB, Lee KH, Jung KY, Do JC, Kim YH. Antinociceptive mechanisms of dipsacus saponin C administered intracerebroventricularly in the mouse. Gen Pharmacol. 1996;27:1167-1172. https://doi.org/10.1016/S0306-3623(96)00052-3
  21. Suh HW, Song DK, Kim YH. Differential effects of adenosine receptor antagonists injected intrathecally on antinociception induced by morphine and beta-endorphin administered intracerebroventricularly in the mouse. Neuropeptides. 1997;31:339-344. https://doi.org/10.1016/S0143-4179(97)90069-X
  22. Suh HW, Chung KM, Kim YH, Huh SO, Song DK. Effects of histamine receptor antagonists injected intrathecally on antinociception induced by opioids administered intracerebroventricularly in the mouse. Neuropeptides. 1999;33:121-129. https://doi.org/10.1054/npep.1999.0006
  23. Chapman CR, Casey KL, Dubner R, Foley KM, Gracely RH, Reading AE. Pain measurement: an overview. Pain. 1985;22:1-31.
  24. Grumbach L. The prediction of analgesic activity in man by animal testing. In: Knighton RS, Dumke PR ed, Pain. Boston: Little Brown and Co.; 1966. 163-182 p.
  25. Vyklicky L. The techniques for the study of pain in animals. In: Bonica JJ, Liebeskind JC, Albe-Fessard DG ed, Advances in Pain Research and Theraphy, Vol. 3. New York: Raven Press; 1979. 727-745 p.
  26. Cumberbatch MJ, Herrero JF, Headley PM. Exposure of rat spinal neurones to NMDA, AMPA and kainate produces only short-term enhancements of responses to noxious and nonnoxious stimuli. Neurosci Lett. 1994;181:98-102. https://doi.org/10.1016/0304-3940(94)90569-X
  27. Schmauss C, Yaksh TL. In vivo studies on spinal opiate receptor systems mediating antinociception. II. Pharmacological profiles suggesting a differential association of mu, delta and kappa receptors with visceral chemical and cutaneous thermal stimuli in the rat. J Pharmacol Exp Ther. 1984;228:1-12.
  28. Yaksh TL. Direct evidence that spinal serotonin and noradrenaline terminals mediate the spinal antinociceptive effects of morphine in the periaqueductal gray. Brain Res. 1979;160:180-185. https://doi.org/10.1016/0006-8993(79)90616-4
  29. Yaksh TL. Multiple opioid receptor systems in brain and spinal cord: Part I. Eur J Anaesthesiol. 1984;1:171-199.
  30. Jensen TS, Yaksh TL. Spinal monoamine and opiate systems partly mediate the antinociceptive effects produced by glutamate at brainstem sites. Brain Res. 1984;321:287-297. https://doi.org/10.1016/0006-8993(84)90181-1
  31. Wigdor S, Wilcox GL. Central and systemic morphine-induced antinociception in mice: contribution of descending serotonergic and noradrenergic pathways. J Pharmacol Exp Ther. 1987;242:90-95.

Cited by

  1. Inhibition of cell proliferation and triggering of apoptosis by agrimonolide through MAP kinase (ERK and p38) pathways in human gastric cancer AGS cells vol.7, pp.11, 2012, https://doi.org/10.1039/c6fo00715e
  2. Tiliroside, the major component of Agrimonia pilosa Ledeb ethanol extract, inhibits MAPK/JNK/p38-mediated inflammation in lipopolysaccharide-activated RAW 264.7 macrophages vol.12, pp.1, 2012, https://doi.org/10.3892/etm.2016.3305
  3. The first record of Agrimonia gorovoii Rumjantsev in Korea (Rosaceae) vol.47, pp.2, 2017, https://doi.org/10.11110/kjpt.2017.47.2.132
  4. Anti-Nociceptive Effect and Standardization from Mixture of Agrimonia pilosa Ledeb and Salvia miltiorrhiza Bunge Extracts vol.21, pp.6, 2018, https://doi.org/10.1089/jmf.2017.4077
  5. Antinociceptive Effect of Single Components Isolated from Agrimonia pilosa Ledeb. Extract vol.87, pp.3, 2012, https://doi.org/10.3390/scipharm87030018
  6. The Anti-Inflammatory and the Antinociceptive Effects of Mixed Agrimonia pilosa Ledeb. and Salvia miltiorrhiza Bunge Extract vol.10, pp.6, 2012, https://doi.org/10.3390/plants10061234
  7. Promising Antiviral Activity of Agrimonia pilosa Phytochemicals against Severe Acute Respiratory Syndrome Coronavirus 2 Supported with In Vivo Mice Study vol.14, pp.12, 2012, https://doi.org/10.3390/ph14121313