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Abstract: This paper describes the design of a fuzzy adaptive sliding mode controller for tracking control of robotic manipulators. 

The proposed controller incorporates a modified traditional sliding mode controller to drive the system state to a sliding surface and 

then keep the system state on this surface, and a fuzzy logic controller to accelerate the reaching phase. The stability of the control 

system is ensured by using Lyapunov theory. To verify the effectiveness of the proposed controller, computer simulation is conducted 

for a five-bar planar robotic manipulator. The simulation results show that the proposed controller can improve the reaching time and 

eliminate chattering of the control system at the same time. 
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I. INTRODUCTION 

Robotic manipulators play important roles in industrial 

automation systems [1,2]. Especially, they are best suited to work 

in hazardous environments where human cannot. Tracking control 

of robotic manipulators is one of the challenging tasks due to the 

highly coupled and highly time-varying dynamic system. In 

addition, there always exist uncertainties in the system model such 

as parameter uncertainty and external disturbance which cause 

unstable performance of the control system. Therefore, there is a 

need to introduce tracking control strategies for robotic 

manipulators with robustness, adaptive capability, fast 

convergence and simple structure. 

SMC (Sliding Mode Control) is a special class of robust 

variable structure controllers. SMC has gained much attention for 

its independence from parametric uncertainties and external 

disturbances under matching conditions. In general, a SMC law is 

designed such that the state trajectories of the closed-loop system 

are driven toward a specified sliding surface, and once on the 

sliding surface they slide towards the origin [3-5]. Usually, the 

conventional SMC uses a large switching gain formula for 

handling the uncertainties and external disturbances. However, the 

large value of switching gains will lead to a large dither of control 

signal and increase the chattering of the system. For eliminating 

the chattering, several methods based on the use of a boundary 

layer in the sliding mode have been reported [6-8]. Although these 

approaches can eliminate chattering, they degrade the robustness 

of control system. In [9], the continuous sliding mode control 

strategy was proposed which can drive the system state to a 

chattering free sliding mode but tends to produce conservative 

designs. In general, there is a trade-off between the smooth of the 

control input history and the tracking error of the SMC controller. 

Fuzzy control systems, as a tool against the problem of 

uncertainty and vagueness, incorporate human experience into the 

task of controlling a plant. Recently, several researchers have tried 

to eliminate or attenuate the chattering by applying fuzzy theory. 

In [10,11], a combination of fuzzy logic tuning scheme and 

sliding mode control is presented for accelerating the reaching 

phase and reducing the influence of unmodelled uncertainties. 

However, the control scheme in [10,11] was proposed to apply 

just to linear control systems. In [12,13], the fuzzy sliding mode 

control approaches were presented in which the fuzzy control is 

used to properly adjust the feedback gain in the conventional 

sliding mode control system. As a result, alleviation of chattering 

and robust performance can be achieved. In other approaches, the 

fuzzy control is used to reconstruct the dynamic model of robotic 

manipulator or the control system while the sliding mode control 

is used to assign the fuzzy control rules initially and provide the 

global stability of the closed-loop system [14-17]. However, the 

main problem existing in the above approaches is the large 

number of fuzzy rules for the large dimension of the control 

systems. 

In this paper, a proposed controller based on fuzzy control and 

adaptive sliding mode control is presented for tracking control of 

robotic manipulators. The proposed controller incorporates a 

modified traditional sliding mode controller to drive the system 

state to a sliding surface and then keep the system state on this 

surface, and a fuzzy logic controller to accelerate the reaching phase 

and to reduce the chattering in the sliding phase. The stability of 

the control system is ensured by using Lyapunov theory.  

The rest of the paper is organized as follows. In Section II, the 

dynamic model of general robotic manipulator is presented in the 

presence of structured and unstructured uncertainties, and a 

traditional sliding mode control is designed. In Section III, the 
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proposed fuzzy adaptive sliding mode controller is presented and 

the stability of the closed-loop system is proven. A five-bar planar 

robotic manipulator with planned trajectories is simulated to 

verify the validity of the proposed controller as given in Section 

IV. Finally, a conclusion is reached in Section V. 

 

II. TRADITIONAL SLIDING MODE CONTROL FOR 

ROBOTIC MANIPULATORS 

1. Dynamic model of robotic manipulators 

The dynamic model of an n-link robotic manipulator is 

expressed by the following equation: 

 ( ) ( , ) ( )+ + =�� � �M q q C q q q G q τ  (1) 

where 
1

[ ,..., ]
T

n
q q=q is an n × 1 vector of joint angular position; 

1
[ ,..., ]

T

n
q q=� � �q is an n × 1 vector of joint velocity; 

1
[ ,...,q=�� ��q  

]
T

n
q�� s an n × 1 vector of joint acceleration; τ is an n × 1 vector of 

applied joint torques (control inputs); ( )M q  is an n × n inertia 

matrix; ( , )�C q q is an n × n matrix of Coriolis and centrifugal 

forces; and ( )G q  is an n × 1 gravity vector. 

The inertia matrix ( )M q  is symmetric and positive definite. It 

is also bounded as a function of 
1 2

: ( ) ,µ µ≤ ≤q I M q I  

1 2
( ) .m m≤ ≤M q  The matrix described by ( ) 2 ( , )−� �M q C q q  

is a skew symmetric matrix, that is [ ( ) 2 ( , )] 0− =
� �

T
x M q C q q x  

where x is an n×1 nonzero vector. The gravity vector G(q) is 

bounded as a function of : ( )
b

g≤q G q  where gb is a function of 

q. For simplification, ( ),M q ( , )�C q q  and ( )G q  are written as 

M, C and G, respectively. 

If there is the presence of uncertainties in the system, M, C and 

G are only partly known. Thus, M, C and G can be described as 

follows: 

 ˆ= + ∆M M M  (2) 

 ˆ= + ∆C C C  (3) 

 ˆ= + ∆G G G  (4) 

where ˆ ,M Ĉ  and Ĝ  are known parts of the estimated 

parameter, and ∆M, ∆C and ∆G are the unknown parts. 

Therefore, in the presence of uncertainties, the dynamic model 

of robotic manipulators can be written as follows: 

 ˆ ��Mq + ˆ �Cq + ˆ + ∆ =G τ τ  (5) 

where ∆ = ∆ + ∆ + ∆�� �Mq Cq Gτ  is the vector of uncertainties of 

the robotic system. 

 

2. Traditional sliding mode controller 

Let qd ∈R
n be the vector of desired state vector, and 

d
= −e q q  

the tracking error vector of the robotic manipulator. The first step 

in the design of sliding mode control is to define the sliding 

surface function as: 

 = + Λ = −� � �
r

s e e q q  (6) 

where Λ is diagonal positive constant vector which determines the 

motion feature in the sliding surface; and the reference states are 

defined as: 

 = − = −� � �
r d

q q s q eΛ  (7) 

 = − = −�� �� � �� �
r d

q q s q eΛ  (8) 

In the second step, a control law is designed as the following 

equation: 

 
eq sw

= +τ τ τ  (9) 

where the first term τeq is the equivalent control which keeps the 

trajectory of the system state on sliding surface; and the second 

term τsw is the switching control which drives the system state 

toward the sliding surface when it is deviated from this surface. 

The equivalent control is considered for the nominal system 

and can be obtained as: 

 ˆ
eq r
= ��Mqτ + ˆ �Cq + Ĝ  (10) 

The switching control is designed as: 

 ˆ ( )
sw

sign= − −Cs K sτ  (11) 

where 
1

[ ,..., ]
n

diag K K=K  is a diagonal positive definite 

matrix of switching gains; sign(s) is the signum function of the 

sliding surface. 

Now, by substituting (6), (10) and (11) into (9) we obtain the 

traditional SMC for robotic manipulators: 

 ˆ
= ��

r
Mqτ + ˆ �

r
Cq + ˆ ( )sign−G K s   (12) 

Theorem 1: Consider the robotic manipulators which are 

described by dynamic model (5). If the sliding mode controller is 

designed by (11) in which the switching gain matrix K satisfies: 

 ,
i i bound

K τ≥ ∆   i = 1, ..., n (13) 

where 
i bound

τ∆ is the boundary of ∆τ, then the overall system is 

asymptotically stable. 

Proof: Let us define the positive definite Lyapunov function 

candidate as: 

 
1

ˆ

2

T
V = s Ms   (14) 

The derivative of V is: 

 
1 ˆ(
2

T
V =
� �s Ms + ˆT �

s Ms + ˆ )T T
�s Ms   (15) 

From properties of dynamic model of robotic manipulators in 

Section II.1, we have: 

 ˆT
�s Ms = ˆT T

�s Ms  (16) 

 ˆ[
�T

s M – ˆ2 ] 0=C s   or  ˆT �
s Ms = ˆ2

T
s Cs  (17) 

Substituting (16) and (17) into (15) yields: 

ˆ[
T

V =
� s Cs + ˆ ��Mq – ˆ ]

r
��Mq  

 ˆ[
T

= s Cs + ˆ
− �Cqτ – ˆ ˆ ]

r
− ∆ − ��G Mqτ  (18) 

Now, substituting control input from controller (12) into (18) 
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we obtain: 

[ ]( )T
V sign= − − ∆� s K s τ  

( ) ( )
1 1

n n

i i i i i i i

i i

K s s s Kτ τ

= =

= − − ∆ ≤ − + ∆∑ ∑  (19) 

By choosing the switching gains Ki (i = 1,..,n) satisfying (11) 

we have: 

 0V ≤�  (20) 

From (14) and (20), it could be concluded that the overall 

system is asymptotically stable. 

 

III. PROPOSED FUZZY ADAPTIVE SLIDING MODE 

CONTROLLER 

The traditional SMC introduced in Section II involves two 

phases: reaching phase and sliding phase. In the designing of 

SMC, if a large switching gain K of switching control is chosen, 

the reaching phase will be accelerated. However, this large 

switching gain will cause big chattering in the sliding phase. On 

the other hand, with a small switching gain, the chattering in the 

sliding phase will be reduced, but the reaching phase is slow. 

Thus, an additional controller τF is introduced as a solution to this 

problem. 

The auxiliary fuzzy controller is proposed as follows: 

 
F F
= −K sτ  (21) 

where KF = diag[KF1,...,KFn] is a positive diagonal matrix defined 

as follows. 

The components KFi of the matrix KF are continuously adjusted 

by the use of fuzzy logic, depending on the change of sliding 

functions si (i=1,..,n). The purpose of the adjusting of components 

KFi is to have the following rule base: 

1) If si is positive large, then τFi is negative large; 

2) If si is positive small, then τFi is negative small; 

3) If si is negative large, then τFi is positive large; 

4) If si is negative small, then τFi is positive small. 

Based on this reasoning, the following fuzzy rules are used for 

tuning KFi: 

1) If 
i
s  is large, then 

i
γ  is large. 

2) If 
i
s  is small, then 

i
γ  is small. 

The fuzzy logic controller for tuning KF is depicted in Fig. 1. 

Using fuzzy labels large and small, the following membership 

functions are defined for inputs of the fuzzy logic controller: 

 
_

1 exp
i

i

s large

i

s

µ
σ

 
= − − 

 
 (22) 

 
_

exp
i

i

s small

i

s

µ
σ

 
= − 

 
 (23) 

where σi (i = 1,...,n) are positive constants. 

The membership functions for outputs KFi are defined as 

singletons: 

 
_

1,

0,Fi

Fi Fmi

K large

Fi Fmi

K K

K K
µ

=
= 

≠
 (24) 

1
s

2
s

n
s

1F
K

2F
K

Fn
K

 

그림 1. KF 튜닝을 위한 퍼지 논리 제어기. 

Fig.  1. The fuzzy logic controller for tuning KF. 

 

 
_

1, 0

0, 0Fi

Fi

K small

Fi

K

K
µ

=
= 

≠
 (25) 

where KFmi are positive scaling factors (i = 1,..,n). 

Using the max-min defuzzification method for the fuzzy 

schemes above yields [10]: 

 1 exp( )
i

Fi Fmi

i

s
K K

σ

 
= − − 

 
 (26) 

where KFmi and σi are tuning parameters (i = 1,..,n). 

In addition, the switching controller (11) is replaced by the 

following controller: 

 ˆ
s
= − −Cs Tsτ  (27) 

where T is a diagonal positive matrix for enhancing the stability of 

the control system. 

The proposed fuzzy adaptive sliding mode controller for 

robotic manipulators has the following form: 

eq s F
= + +τ τ τ τ  

 ˆ
ar

= ��Mq + ˆ
ar
�Cq + ˆ .

F
− −G Ts K s  (28) 

Theorem 2: Consider the robotic manipulators described by 

dynamic model (5). If the proposed fuzzy adaptive sliding mode 

controller is designed by (28) in which the fuzzy logic controller 

τF is defined by (21), KF is tuned by (26) and Ti (i=1,..,n) are 

chosen large enough, then the overall system is asymptotically 

stable. 

Proof: Let us define the positive definite Lyapunov function 

candidate (11), and with the proposed control law (25) we have 

the first derivative V� : 

ˆ[
T

V =
� s Cs + ˆ− �Cqτ – ˆ − ∆G τ – ˆ ]

r
��Mq  

[ ]T

F
= − − ∆ −s Ts K sτ  

( )2 2

1 1

n n

i i i i Fi i

i i

T s s K sτ

= =

= − − ∆ −∑ ∑  (29) 

( )2 2

1 1

n n

i i i i Fi i

i i

T s s K sτ

= =

≤ − + ∆ −∑ ∑  

We assume that: 

 , 1,...,
i i i

s i nτ ς∆ ≤ =  (30) 

where ζi (i = 1,..., n) are positive constants which always can be 

found. 

By substituting (30) and (26) into (29) we obtain: 
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 ( )2 2 2

1 1

1 exp( )
n n

i

i i i i Fmi i

i i i

s
V T s s K sς

σ
= =

 
≤ − + − − − 

 
∑ ∑�  (31) 

In addition, since KFmi is positive, we also have: 

 21 exp( ) 0
i

Fmi i

i

s
K s

σ

 
− − ≥ 

 
 (32) 

Therefore, if we choose Ti ≥ ζi, then 0.V ≤�  It could be 

concluded that the overall system is asymptotically stable based 

on Lyapunov theory. 

It is important to note that the magnitude of the fuzzy controller 

(21) will increase with an increase of the sliding function 

manitude | si | and vice versa. But the sign of the fuzzy control 

component is opposite to that of the sliding function component. 

The fuzzy controller (21) has an influence on the overall control 

action such that when the state trajectories are far from the sliding 

surface, the gain components KFi are increased to drive them to the 

sliding surface fast. And when the state trajectories approach the 

sliding surface, the components KFi are decreased. Tuning the 

coefficients σi depends on the magnitudes of the sliding functions, 

while the values KFmi depend on the saturation condition of the 

control input. 

 

IV. EXAMPLE SIMULATION 

The proposed controller is applied to the trajectory tracking 

control of a five-bar planar robotic manipulator which is described 

in Fig. 3. The robotic manipulator has 2 active joints, 3 passive 

joints and five links. The active joints are actuated by actuators 

while the passive joints are free to move. 

The dynamic model of the robotic five-bar planar manipulator 

in the active joint space is expressed by the following equation 

[18]: 

 + =�� �
a a a a a

M q C q τ  (33) 

where 
1 2

[ , ]T
a a

q q=
a
q is a vector which represents two active 

joint angles. And 
1 2

[ , ] ,T
a a

q q=� � �
a
q

1 2
[ , ]T

a a
q q=�� �� ��

a
q  are velocity 

vector and acceleration vector, respectively. Ma is generalized 

inertia matrix, Ca is vector of Coriolis and centrifugal forces. And 

1 2
[ , ]

T

a a a
τ τ=τ  is vector of the generalized torque of active joints 

A1 and A2. The dynamic model (33) has the properties as 

expressed in Section II.1.  

1
P

O

A
1

0l

1
l

q
a1

2

x

l0

A
2

P

y

2
l

E(x,y)

Passive joints

Active joints

l
2

1
l

q
a2

 

그림 3. 5-bar 평면 매니퓰레이터. 

Fig.  3. The five-bar planar manipulator. 

 

The link parameters of the five-bar manipulators are l1 = 0.102 

m, l2 = 0.18 m, l0 = 0.066 m, m1 = 0.8 kg, m2 = 1.2 kg, Iz1 = 0.0013 

kgm2, Iz2 = 0.0027 kgm
2, lc1 = 0.055 m, lc2 = 0.091 m in which l0, l1, 

l2 are the link lengths; m1, m2 are the masses; Izi1, Izi2 are the 

inertias tensor of links of serial chain i; lc1, lc2 are the distances 

from the joints to the center of mass for each link of the five-bar 

manipulator. 

In practice, it is very difficult to measure the distances from the 

joint to the center of mass and the inertias tensor of links. So we 

conducted the simulations with different parameters both in 

mechanical model of robot and in the controllers as follows: 

 ˆ 0.9 , 1,2
ci ci
l l i= =  (34) 

where ˆ
ci
l  were used for calculating ˆ ,

a
M ˆ

a
C  in the controllers. 

This treatment will make the modelling errors ∆
a

M  and ∆
a

C  

of the dynamic model. 

The traditional sliding mode controller (12) using BLM 

(Boundary Layer Method) (32) applied to the five-bar robotic 

manipulator is expressed as follows: 

 ˆˆ ( / )
ar ar

sat φ= + −�� �
a

Mq Cq K sτ  (35) 

where sat(s/φ) is saturation function defined by [3]: 

/
( / )

( ) .

s if s
sat s

sign s if s

φ φ
φ

φ

 ≤
= 

>
 

Λees += � TssC −−
ˆ

GqCqMτ ˆˆˆ
++= ���

req

dd qq �,

dq
��

Fτ

eq
τ

s
τ

sKF−

ee �, qq �
,

 

그림 2. 제안된 퍼지 적응 슬라이딩 모드 제어기의 블록 다이어그램. 

Fig.  2. Block diagram of the proposed fuzzy adaptive sliding mode controller. 
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그림 4. 선형 궤적 추적 결과. 

Fig.  4. Result of tracking linear trajectory. 

 

 

그림 5. 능동 관절 1 슬라이딩면. 

Fig.  5. Sliding surface of active joint 1. 

 

The proposed fuzzy adaptive sliding mode controller (FASMC) 

applied to the five-bar robotic manipulator is expressed as 

follows: 

 ˆˆ
ar ar F

= + − −�� �
a

Mq Cq Ts K sτ  (36) 

where KF is tuned by (26). 

Simulation studies were conducted on Matlab-Simulink and the 

mechanical of the five-bar planar manipulator was built on 

SimMechanics toolbox following the method presented in [19]. 

The simulations were carried out with respect to the case when the 

five-bar manipulator tracks a line on XY plane. The comparisons 

between the performance of the traditional SMC using BLM and 

the proposed FASMC were performed. For the linear reference 

trajectory, the starting point is A(0.04, 0.2) and the ending point is 

B(0.088, 0.136). The time for tracking is 8 seconds. 

The parameters in the traditional SMC were set to be: K1 = K2 = 

0.6, φ1 = φ2 = 0.1. The parameters in the proposed FASMC 

controller were set to be: T1 = T2 = 0.6, φ1 = φ2 = 0.1, KFm1 = KFm2 

= 2, σ1 = σ2 = 1/5. These parameters were obtained by trial and 

error method. 

Fig. 4 shows the results of tracking a linear trajectory. The 

initial point of the end-effector of the five-bar manipulator is 

A0(0.03, 0.25). It can be seen that the end-effector of robot can 

track the linear reference trajectory well. 

The comparisons of the sliding surfaces of active joint 1 and 

active joint 2 are shown in Figs. 4 and 5. It can be seen that in the 

case of using FASMC, the system state reaches the sliding surface 

more quickly than the case of SMC using BLM. This better result 

of using FASMC is obtained by introducing the fuzzy control 

component. 

Next, Figs. 7 and 8 show the control inputs of active joint 1 and 

active joint 2 in the case of SMC using BLM. The enlargements 

of localized regions show that the chattering phenomenon still 

happen in this case. 

 

그림 6. 능동 관절 2 슬라이딩면. 

Fig.  6. Sliding surface of active joint 2. 

 

 

그림 7. BLM을 사용하는 SMC 경우, 능동 관절 1의 제어 입

력. 

Fig.  7. Control input of active joint 1 in the case of SMC using 

BLM. 

 

 

그림 8. BLM을 사용하는 SMC 경우, 능동 관절 2의 제어 입

력. 

Fig.  8. Control input of active joint 2 in the case of SMC using 

BLM. 
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그림 9. 제안된 FASMC를 사용하는 경우, 능동 관절 1의 제

어 입력. 

Fig.  9. Control input of active joint 1 in the case of using proposed 

FASMC. 

 

 

그림 10. 제안된 FASMC를 사용하는 경우, 능동 관절 2의 제

어 입력. 

Fig.  10. Control input of active joint 2 in the case of using proposed 

FASMC. 

 

Figs. 9 & 10 show the control inputs of active joint 1 and active 

joint 2 in the case of using proposed FASMC. It can be seen from 

the enlargements of localized regions that the chattering 

phenomenon is eliminated in comparison with the case of SMC 

using BLM. 

It could be concluded from the above-mentioned simulation 

results that the proposed fuzzy adaptive sliding mode controller is 

of high efficiency for the control of robotic manipulators. 

 

V. CONCLUSION 

A fuzzy adaptive sliding mode controller is proposed for 

tracking control of robotic manipulators. The novel controller is 

achieved by combining a modified traditional sliding mode 

controller and a fuzzy logic controller which has advantages such 

as flexibility and adaptation. The modified traditional sliding 

mode controller drives the system state to a sliding surface and 

then keeps the system state on this surface, while the fuzzy logic 

controller is used to accelerate the reaching phase and to reduce 

the chattering in the sliding phase. The stability of the control 

system is ensured by using Lyapunov theory. Simulations are 

conducted for a five-bar planar robotic manipulator. Compared 

with the traditional sliding mode control, the proposed controller 

brings about a shorter reaching time of system state to the sliding 

surface while eliminating the chattering phenomenon at the same 

time. 
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