Synthesis and Characterization of Mica Coated with Zinc Oxide Nanoparticles

산화 아연 나노 입자로 도포된 마이카의 합성 및 특성 규명

  • Kil, Hyun Suk (Department of Chemistry and Green Home Energy Technology Research Center, Kongju National University) ;
  • Kim, Young Ho (Department of Chemistry and Green Home Energy Technology Research Center, Kongju National University) ;
  • Park, Minyoung (Department of Chemistry and Green Home Energy Technology Research Center, Kongju National University) ;
  • Rhee, Seog Woo (Department of Chemistry and Green Home Energy Technology Research Center, Kongju National University)
  • 길현석 (공주대학교 화학과 및 그린홈에너지기술연구소) ;
  • 김용호 (공주대학교 화학과 및 그린홈에너지기술연구소) ;
  • 박민영 (공주대학교 화학과 및 그린홈에너지기술연구소) ;
  • 이석우 (공주대학교 화학과 및 그린홈에너지기술연구소)
  • Published : 2012.06.10

Abstract

In this work, we have prepared the nanocomposite by the reaction of mica and zinc oxide, and investigated the application of nanocomposite to UV protecting creams. Mica treated with 3-aminopropyltrimethoxysilane (APTMS) reacted with 1,4-phenylenediisothiocyanate (PDC) to give -N=C=S functionalized surface, which was further reacted with zinc oxides coated with APTMS to give mica-zinc oxide nanocomposites. The composites were characterized by EA, EDS, TGA, SEM, zeta potential measurement, powder XRD, and DRS UV/Vis analyses. Finally, we measured transmittances of ultraviolet protection creams manufactured by using mica composite covered with zinc oxides in the range of 280~400 nm. The nanocomposites developed in this work might be applicable as inorganic hybrid materials for UV protecting creams.

본 연구에서는 마이카와 산화 아연을 이용하여 복합 재료를 제조하고, 이를 자외선 차단 크림에 응용하는 연구를 수행하였다. 먼저 마이카와 산화 아연을 각각 3-aminopropyltrimethoxysilane (APTMS)으로 처리하여 표면에 아민기를 생성시켰다. 아민기가 붙은 마이카를 1,4-phenylenediisothiocyanate (PDC)와 반응시켜 표면에 -N=C=S 작용기를 활성화시킨 후, 아민기가 붙어있는 산화 아연과 결합시켜 산화 아연으로 덮인 마이카 복합 재료를 합성하였다. 원소 분석, EDS 분석, 열 중량 분석, SEM 이미지 분석, 형광 이미지 분석, 제타 전위 측정, X-선 회절 분석, DRS UV/Vis 분석을 통하여 고체 생성물의 특성을 규명하였다. 최종적으로 표준 프로토콜로 제조된 자외선 차단 크림의 파장에 따른 투과도를 280~400 nm 범위에서 측정하여 자외선 차단 효과를 확인하였다.

Keywords

References

  1. L. Xia, S. C. Lenaghan, M. Zhang, Z. Zhang, and Q. Li, J. Nanobiotechnol., 8, 12 (2010). https://doi.org/10.1186/1477-3155-8-12
  2. H. Gonzalez, Photochem. Photobiol. Sci., 9, 482 (2010). https://doi.org/10.1039/b9pp00149b
  3. F. P. Gasparro, M. Mitchnick, and J. F. Nash, Photochem. Photobiol., 68, 243 (1998). https://doi.org/10.1111/j.1751-1097.1998.tb09677.x
  4. L. Truffault, B. Winton, B. Choquenet, C. Andreazza, C. Simmonard, T. Devers, K. Konstantinov, C. Couteau, and L. J. M. Coiffard, Mater. Lett., 68, 357 (2012).
  5. R. Rai and C. R. Srinivas, Indian J. Dermatol. Venereol. Leprol., 73, 73 (2007). https://doi.org/10.4103/0378-6323.31889
  6. L. Beyere, S. Yarasi, and G. R. Loppnow, J. Raman Spectrosc., 34, 743 (2003). https://doi.org/10.1002/jrs.1042
  7. S. K. Jain and N. K. Jain, Int. J. Cosmet. Sci., 32, 89 (2010). https://doi.org/10.1111/j.1468-2494.2010.00547.x
  8. S. Kale, A. Sonawane, A. Ansari, P. Ghoge, and A. Waje, Int. J. Pharm. Pharm. Sci., 2, 147 (2010).
  9. N. Serpone, D. Dondi, and A. Albini, Inorg. Chim. Acta, 360, 794 (2007). https://doi.org/10.1016/j.ica.2005.12.057
  10. T. Masui, M. Yamamoto, T. Sakata, H. Mori, and G.-Y. Adachi, J. Mater. Chem., 10, 353 (2000). https://doi.org/10.1039/a906583k
  11. A. Nasu and Y. Otsubo, J. Colloid. Interface Sci., 310, 617 (2007). https://doi.org/10.1016/j.jcis.2007.02.012
  12. S. Y. Rho, K. D. Kim, G. Y. Song, and H. T. Kim, J. Korean Ind. Eng. Chem., 17, 274 (2006).
  13. M. Saito, J. Print. Sci. Technol., 36, 50 (1999).
  14. S. Anandan, N. Ohashi, and M. Miyauchi, Appl. Catal. B, 100, 502 (2010). https://doi.org/10.1016/j.apcatb.2010.08.029
  15. Z. Liu, Q. Zhang, and L.-C. Qin, Solid State Commun., 141, 168 (2007). https://doi.org/10.1016/j.ssc.2006.09.055
  16. N. Nagatani and R. Tsuchiya, J. Soc. Powder Technol. Jpn., 41, 283 (2004).
  17. Z. Cao, Z. Zhang, F. Wang, and G. Wang, Colloids Surf. A, 340, 161 (2009). https://doi.org/10.1016/j.colsurfa.2009.03.024
  18. E. Ukaji, T. Furusawa, M. Sato, and N. Suzuki, Appl. Surf. Sci., 254, 563 (2007). https://doi.org/10.1016/j.apsusc.2007.06.061
  19. M. Ikeda, New Developments of High-Reflective Materials, ed. Y. Matsuo, 1, 66, CMC, Tokyo (2010).
  20. J.-H. Lee, J.-Y. Han, S.-G. Lee, H.-B. Pyo, and D.-K. Lee, J. Soc. Cosmet. Scientists Korea, 30, 173 (2004).
  21. H. Nabeshi, T. Yoshikawa, K. Matsuyama, Y. Nakazato, S. Tochigi, S. Kondoh, T. Hirai, T. Akase, K. Nagano, Y. Abe, Y. Yoshioka, H. Kamada, N. Itoh, S. Tsunoda, and Y. Tsutsumi, Part. Fibre Toxicol., 8, 1 (2011). https://doi.org/10.1186/1743-8977-8-1
  22. N. Li, L. Ma, J. Wang, L. Zheng, J. Liu, Y. Duan, H. Liu, X. Zhao, S. Wang, H. Wang, F. Hong, and Y. Xie, Nanoscale Res. Lett., 5, 108 (2010). https://doi.org/10.1007/s11671-009-9451-2
  23. M.-S. Kim, K. Choi, Y. Kim, and J. Yi, Clean Technol., 13, 161 (2007).
  24. K. L. Aillon, Y. Xie, N. El-Gendy, C. J. Berkland, and M. L. Forrest, Adv. Drug Deliver. Rev., 61, 457 (2009). https://doi.org/10.1016/j.addr.2009.03.010
  25. M. Alexandre and P. Dubois, Mater. Sci. Eng. A, 28, 1 (2000).
  26. H. H. Joo, C. Y. Park, T. K. Kim, J. H. Chun, W. K. Lee, and S. T. Oh, J. Adhes. Interface, 11, 106 (2010).
  27. M. I. Carretero and M. Pozo, Appl. Clay Sci., 47, 171 (2010). https://doi.org/10.1016/j.clay.2009.10.016
  28. H. S. Na, Soc. Cosmet. Publ. Health, 2, 118 (2006).
  29. C. Viseras, C. Aguzzi, P. Cerezo, and A. Lopez-Galindo, Appl. Clay Sci., 36, 37 (2007). https://doi.org/10.1016/j.clay.2006.07.006
  30. R. Saluja, G. Yosowitz, and M. P. Goldman, Cosmet. Dermatol., 20, 382 (2007).
  31. I. S. Chang and O. S. Lee, Prospect. Ind. Chem., 3, 11, (2000).
  32. S. Ibrahim, B. Joddar, M. Craps, and A. Ramamurthi, Biomaterials, 28, 825 (2007). https://doi.org/10.1016/j.biomaterials.2006.09.030
  33. C. Maierhofer, K. Rohmer, and V. Wittmann, Bioorg. Med. Chem., 15, 7661 (2007). https://doi.org/10.1016/j.bmc.2007.08.063
  34. A. V. Rodina, N. V. Gukasova, V. A. Makarov, I. G. Kondrasheva, A. V. Khomyakova, G. A. Posypanova, O. N. Popova, E. Y. Moskaleva, and S. E. Severin, Biochemistry (Mosc.), 73, 797 (2008). https://doi.org/10.1134/S0006297908070080
  35. J. Chang, Y. Jallouli, M. Kroubi, X.-B Yuan, W. Feng, C.-S. Kang, P.-Y. Pu, and D. Betbeder, Int. J. Pharm., 379, 285 (2009). https://doi.org/10.1016/j.ijpharm.2009.04.035
  36. C.-J. Xie, D.-G. Yin, J. Li, L. Zhang, B.-H. Liu, and M.-H. Wu, Chin. J. Anal. Chem., 38, 488 (2010). https://doi.org/10.1016/S1872-2040(09)60043-8
  37. Y. Nomura, S. Sato, H. Mori, and T. Endo, J. Appl. Polym. Sci., 109, 608 (2008). https://doi.org/10.1002/app.27900
  38. J. Zhao, M. Milanova, M. M. C. G. Warmoeskerken, and V. Dutschk, Colloids Surf. A, doi:10.1016/j.colsurfa.2011.11.033.
  39. T. Delair, F. Meunier, A. Elaїssari, M.-H. Charles, and C. Pichot, Colloids Surf. A, 153, 341 (1999). https://doi.org/10.1016/S0927-7757(98)00456-7
  40. G. D. Huy, N. Jin, B.-C. Yin, and B.-C. Ye, Bioprocess Biosyst. Eng., 34, 189 (2011). https://doi.org/10.1007/s00449-010-0460-4
  41. A. S. Klymchenko, D. A. Yushchenko, and Y. Mely, J. Photochem. Photobiol. A, 192, 93 (2007). https://doi.org/10.1016/j.jphotochem.2007.05.009
  42. P. Bihari, M. Vippola, S. Schultes, M. Praetner, A. G. Khandoga, C. A. Reichel, C. Coester, T. Tuomi, M. Rehberg, and F. Krombach, Particle Fibre Toxicol., 5, 14 (2008). https://doi.org/10.1186/1743-8977-5-14
  43. M. A. Wells, A. Abid, I. M. Kennedy, and A. I. Barakat, Nanotoxicol., doi: 10.3109/17435390.2011.625131.
  44. M. Ma, Y. Zhan, Y. Shen, X. Xia, S. Zhang, and Z. Liu, J. Nanopart. Res., 13, 3249 (2011). https://doi.org/10.1007/s11051-011-0239-9
  45. L. Ferrari, J. Kaufmann, F. Winnefeld, and J. Plank, J. Colloid. Interface Sci., 347, 15 (2010). https://doi.org/10.1016/j.jcis.2010.03.005
  46. Z. Adamczyk, M. Zembala, M. Kolasińska, and P. Warszynski, Colloids Surf. A, 302, 455 (2007). https://doi.org/10.1016/j.colsurfa.2007.03.013
  47. S. S. Alias, A. B. Ismail, and A. A. Mohamad, J. Alloys Compd., 499, 231 (2010). https://doi.org/10.1016/j.jallcom.2010.03.174
  48. H. Dai, H. Li, and F. Wang, Surf. Coat. Technol., 201, 2859 (2006). https://doi.org/10.1016/j.surfcoat.2006.05.043
  49. D. Baral, P. P. De, and G. B. Nando, Polym. Degrad. Stability, 65, 47 (1999). https://doi.org/10.1016/S0141-3910(98)00215-8
  50. T. Hirono and W. Tanikawa, Earth Planet. Sci. Lett., 307, 161 (2011). https://doi.org/10.1016/j.epsl.2011.04.042
  51. S. Taruta, S. Shimodaira, T. Yamaguchi, and K. Kitajima, Mater. Lett., 60, 464 (2006). https://doi.org/10.1016/j.matlet.2005.09.013
  52. R. L. Anderson, I. Ratcliffe, H. C. Greenwell, P. A. Williams, S. Cliffe, and P. V. Coveney, Earth Sci. Rev., 98, 201 (2010). https://doi.org/10.1016/j.earscirev.2009.11.003
  53. B. L. Diffey and J. Robson, J. Soc. Cosmet. Chem., 40, 127 (1989).
  54. D. D. Moyal and A. M. Fourtanier, J. Invest. Dermatol., 117, 1186 (2001). https://doi.org/10.1046/j.0022-202x.2001.01545.x