Electricity Generation from Dairy Wastewater Using Microbial Fuel Cell

미생물연료전지를 이용한 유가공 폐수로부터 전기생산

  • Roh, Sung-Hee (Department of Chemical and Biochemical Engineering, Chosun University) ;
  • Lee, Sung-Wook (Department of Chemical and Biological Engineering, Korea University) ;
  • Kim, Kyung-Ryang (Nuclear Fuel Cycle Process Development Division, Korea Atomic Energy Research Institute) ;
  • Kim, Sun-Il (Department of Chemical and Biochemical Engineering, Chosun University)
  • 노성희 (조선대학교 생명화학공학과) ;
  • 이성욱 (고려대학교 화공생명공학과) ;
  • 김경량 (한국원자력연구원 핵주기공정개발부) ;
  • 김선일 (조선대학교 생명화학공학과)
  • Published : 2012.06.10

Abstract

Microbial fuel cell (MFC) is the major of bio-electrochemical system which can convert biomass spontaneously into electricity through the metabolic activity of the microorganisms. In this study, we used an activated sludge as a microbial inoculum and then investigated the feasibility of using dairy wastewater as a possible substrate for generating electricity in MFC. To examine the performance of MFC as power generator, the characteristics on cell potentials, power density, cyclic voltammetric analysis and sustainable power estimation were evaluated for dairy wastewater. The maximum power density of $40\;mW/m^2$was achieved when the dairy wastewater containing 2650 mg/L COD was used, leading to the removal of 88% of the COD. The results from this study demonstrate the feasibility of using MFC technology to generate electricity while simultaneously treating dairy wastewater effectively.

미생물연료전지는 미생물의 신진대사 활동을 통해 자발적으로 바이오매스를 전기로 전환시키는 바이오 전기화학 시스템이다. 본 연구에서는 미생물 접종원으로 활성슬러지를 사용하였으며, 미생물연료전지의 전기생산을 위한 기질로서 유가공 폐수의 적용 가능성을 검토하였다. 전력발생 장치로서 미생물연료전지의 성능을 파악하고자 전지전위, 전력밀도, 순환전압전류 분석 및 지속가능 전력생산에 관한 특성을 유가공 폐수를 적용하여 평가하였다. Chemical Oxygen Demand (COD) 2650 mg/L의 유가공 폐수를 이용한 미생물연료전지 시스템에서 COD가 88% 제거되었으며, 최대 전력밀도는 $40\;mW/m^2$에 도달하였다. 본 연구 결과로부터 유가공 폐수를 효과적으로 처리하는 동시에 전기를 생산하기 위한 미생물연료전지 기술의 적용 가능성을 확인하였다.

Keywords

References

  1. K. Rabaey and W. Verstraete, Trends Biotech., 23, 291 (2005). https://doi.org/10.1016/j.tibtech.2005.04.008
  2. Z. Du, H. Li, and T. Gu, Biotech. Advances, 25, 464 (2007). https://doi.org/10.1016/j.biotechadv.2007.05.004
  3. M. Rahimnejad, A. A. Ghoreyshi, G. Najafpour, and T. Jafary, Appl. Energy, 88, 3999 (2011). https://doi.org/10.1016/j.apenergy.2011.04.017
  4. B. E. Logan and J. M. Regan, Trends Microbiol., 14, 512 (2006). https://doi.org/10.1016/j.tim.2006.10.003
  5. Y. K. Kim, S. Y. Nam, and K. S. Kim, J. Korean Ind. Eng. Chem., 17, 22 (2006).
  6. P. S. Nigam and A. Singh, Progress in Energy and Combustion Sci., 37, 52 (2011). https://doi.org/10.1016/j.pecs.2010.01.003
  7. D. R. Keshwani and J. J. Chen, Bioresource Tech., 100, 1515 (2009). https://doi.org/10.1016/j.biortech.2008.09.035
  8. S. T. Oh, J. R. Kim, G. C. Premier, T. H. Lee, C. Kim, and W. T. Sloan, Biotech. Advances, 28, 871 (2010). https://doi.org/10.1016/j.biotechadv.2010.07.008
  9. S. I. Kim, S. W. Lee, K. R. Kim, J. W. Lee, and S. H. Roh, J. Korean Ind. Eng. Chem., 20, 213 (2009).
  10. D. R. Bond, D. E. Holmes, L. M. Tender, and D. R. Lovley, Science, 295, 483 (2002). https://doi.org/10.1126/science.1066771
  11. S. E. Oh, B. Min, and B. E. Logan, Environ. Sci. Tech., 38, 4900 (2004). https://doi.org/10.1021/es049422p
  12. H. Liu, R. Ramnarayan, and B. E. Logan, Environ. Sci. Tech., 38, 2281 (2004). https://doi.org/10.1021/es034923g
  13. J. K. Jang, T. H. Pham, I. S. Chang, K. H. Kang, H. Moon, K. S. Cho, and B. H. Kim, Process Biochem., 39, 1007 (2004). https://doi.org/10.1016/S0032-9592(03)00203-6
  14. S. E. Oh and B. E. Logan, Water Res., 39, 4673 (2005). https://doi.org/10.1016/j.watres.2005.09.019
  15. APHA, Standards Methods for the Examination of Water and Wastewater, 20thed. American Public Health Association, Washington DC. (1998).
  16. H. Liu, S. Cheng, and B. E. Logan, Environ. Sci. Tech., 39, 5488 (2005). https://doi.org/10.1021/es050316c
  17. K, Rabaey, N. Boon, S. D. Sicliano, M. Vwrhaege, and W. Verstraete, Appl. Environ. Microbiol., 70, 5373 (2004). https://doi.org/10.1128/AEM.70.9.5373-5382.2004
  18. A. Larrosa-Guerrero, K. Scott, I. M. Head, F. Mateo, A. Ginesta, and C. Godinez, Fuel, 89, 3985 (2010). https://doi.org/10.1016/j.fuel.2010.06.025
  19. J. R. Kim, B. Min, and B. E. Logan, Appl. Microbial. Biotech., 68, 23 (2005). https://doi.org/10.1007/s00253-004-1845-6
  20. B. K. Min, J. R. Kim, S. E. Oh, J. M. Regan, and B. E. Logan, Water Res., 39, 4961 (2005). https://doi.org/10.1016/j.watres.2005.09.039
  21. B. E. Logan, C. Murano, K. Scott, N. D. Gray, and L. M. Head, Water Res., 39, 942 (2005). https://doi.org/10.1016/j.watres.2004.11.019
  22. D. R. Bond and D. R. Lovley, Appl. Environ. Microbiol., 69, 1548 (2003). https://doi.org/10.1128/AEM.69.3.1548-1555.2003
  23. G. Reguera, K. P. Nevin, J. S. Nicoll, S. F. Covalla, T. L. Woodard, and D. R. Lovley, Appl. Environ. Microbiol., 72, 7345 (2006). https://doi.org/10.1128/AEM.01444-06