A Study on the Combustion Characteristics of Pelletized and Fluff RDF (Refuse Derived Fuel)

성형 및 비성형 폐기물 고형연료의 연소특성에 관한 연구

  • ;
  • 구재회 (고등기술연구원 플랜트엔지니어링센터) ;
  • 권우택 (한국세라믹기술원 그린세라믹본부) ;
  • 오세천 (공주대학교 환경공학과)
  • Published : 2012.06.10

Abstract

To verify the utilization of fluff refuse derived fuel (RDF) as energy source, the combustion charateristic has been studied by an experimental combustion furnace under various temperatures. The characteristics of flue gas, dust and residue from fluff RDF combustion has been analyzed and compared with those of pelletized RDF. From this work, it was found that the incomplete combustion of fluff RDF was greater than that of pelletized RDF because the combustion reaction rate of fluff RDF was faster than that of pelletized RDF, and oxgen concentration in fluff RDF combustion decreased rapidly. It was also found that carbon monoxide concentration of flue gas from fluff RDF combustion increased with combustion temperature because the oxygen consumption and the incomplete combustion increased. Therefore, it is felt that the combustion operation conditions of fluff RDF should be carefully determined.

본 연구에서는 비성형 RDF의 에너지 활용성을 확인하기 위하여 실험실 연소로를 이용한 온도 변화에 의한 연소특성연구를 하였다. 비성형 RDF 연소시 배출가스의 특성과 분진 및 잔류물을 분석하였으며 또한 그 결과를 성형 RDF의 연소실험 결과와 비교분석하였다. 본 연구로부터 비성형 RDF가 성형 RDF에 비교하여 연소속도가 빨라져서 급격히 산소량이 감소되어 불완전연소율이 증가함을 확인하였다. 또한 연소온도가 높아질수록 연소속도가 향상되었으며 산소 소모량이 급격히 증가하였고, 이에 따른 불완전연소율이 증가하여 CO의 농도가 높아짐을 알 수 있었다. 따라서 비성형 RDF의 완전연소를 위한 운전조건의 설정에 매우 신중을 기해야 할 것으로 판단되었다.

Keywords

References

  1. S. C. Oh, J. H. Ryu, H. Kwak, S.-Y. Bae, and K.-H. Lee, J. Korean Ind. Eng. Chem., 19, 191 (2008).
  2. K.-H. Lee, Journal of Analytical and Applied Pyrolysis, 86, 348 (2009). https://doi.org/10.1016/j.jaap.2009.08.004
  3. S. Karagoz, T. Karayildirim, S. Ucar, M. Yuksel, and J. Yanik, Fuel, 82, 415 (2003). https://doi.org/10.1016/S0016-2361(02)00143-6
  4. P. Klimantos, N. Koukouzas, A. Katsiadakis, and E. Kakaras, Energy, 34, 708 (2009). https://doi.org/10.1016/j.energy.2008.04.009
  5. G. Luc, P. Maria, V. Razvan, B. Jerome, T. Mohabd, G. Benny, and H. Ulrik, Fuel, 87, 1381 (2008).
  6. Y. C. Byun, W. Namkung, M. H. Cho, J. W. Chung, Y. S. Kim, J. H. Lee, C. R. Lee, and S. M. Hwang, Environmental Science and Technology, 44, 6680 (2010). https://doi.org/10.1021/es101244u
  7. S.-K. Hong, J. Korean Society of Environmental Technology, 8, 330 (2007).
  8. D.-G. Lee, H.-Y. Shin, H. Kwak, and S.-Y. Bae, J. Korean Society of Waste Management, 22, 533 (2005).
  9. H. J. So, K. H. Kim, N. S. Roh, D. H. Shin, M. S. Yi, S. K. Lee, and T. I. Ohm, J. Korean Society of Waste Management, 19, 534 (2002).
  10. G. Piao, S. Aono, S. Mori, S. Deguchi, Y. Fujima, M. Kondoh, and M. Yamaguchi, Waste Management, 18, 509 (1998). https://doi.org/10.1016/S0956-053X(98)00140-8
  11. G. Piao, S. Aono, M. Kondoh, R. Yamazaki, and S. Mori, Waste Management, 20, 443 (2000). https://doi.org/10.1016/S0956-053X(00)00009-X
  12. G. Q. Liu, Y. Itaya, R. Yamazaki, S. Mori, M. Yamaguchi, and M. Kondoh, Waste Management, 21, 427 (2001). https://doi.org/10.1016/S0956-053X(00)00134-3
  13. M. Sakka, T. Kimura, K. Sakka, and K. Ohmiya, Biosci. Biotechnol. Biochem., 68, 466 (2004). https://doi.org/10.1271/bbb.68.466
  14. M. Sakka, T. Kimura, K. Ohmiya, and K. Sakka, Biosci. Biotechnol. Biochem., 69, 2081 (2005). https://doi.org/10.1271/bbb.69.2081
  15. M. Sakka, T. Kimura, and K. Sakka, Biosci. Biotechnol. Biochem., 70, 2868 (2006). https://doi.org/10.1271/bbb.60261
  16. W.-H. Kim, J. of Korean Inst. of Resources Recycling, 15, 46 (2006).