Transesterification Reaction of Soybean Oil over KF/MgO Catalyst

KF/MgO 촉매를 이용한 대두유의 전이에스테르화 반응

  • Jo, Yongbeom (Graduate School of Energy and Environmental System Engineering, University of Seoul) ;
  • Jeon, Jong-Ki (Department of Chemical Engineering, Kongju National University) ;
  • Park, Sung Hoon (Department of Environmental Engineering, Sunchon National University) ;
  • Park, Young-Kwon (Graduate School of Energy and Environmental System Engineering, University of Seoul)
  • 조용범 (서울시립대학교 에너지환경시스템 공학과) ;
  • 전종기 (공주대학교 화학공학과) ;
  • 박성훈 (순천대학교 환경공학과) ;
  • 박영권 (서울시립대학교 에너지환경시스템 공학과)
  • Published : 2012.06.10

Abstract

The basic strength of the MgO catalyst was enhanced by impregnating it with KF to synthesize a highly active catalyst for the bio-diesel production. To increase basicity, KF impregnated on synthesized MgO in laboratory. The synthesized catalyst was characterized using $N_2$ adsorption-desorption, X-Ray diffraction, X-Ray fluorescence, and $CO_2$ temperature programmed desorption analyses. Bio-diesel was produced from soybean and methanol and its fatty acid methyl ester content was measured to evaluate the activity of the catalyst. The catalyst impregnated with 30 wt% KF exhibited the highest activity, which was attributed to its abundant intermediate base site.

본 연구에서는 기존 MgO의 염기세기를 증가시켜 전이에스테르화 반응에 있어 보다 좋은 활성을 가지는 촉매를 만들고자 하였다. MgO를 실험실에서 제조한 후 지지체로 사용하였으며 염기세기를 증가시키기 위하여 KF를 함침법으로 담지하였다. BET, XRD, XRF, $CO_2$ TPO로 촉매의 특성분석을 하였고, 대두유과 메탄올을 사용하여 바이오디젤을 합성한 후 지방산메틸에스테르 함유량을 측정함으로써 촉매의 활성을 알아보았다. 결과적으로, KF를 30% 담지한 촉매가 활성이 가장 좋은 것으로 나타났다. 이는 전이에스테르화 반응에서 중간세기 염기도가 더 많이 관여하기 때문으로 보인다.

Keywords

References

  1. Z. Helwani, M. R. Othman, N. Aziz, W. J. N. Fernando, and J. Kim, Fuel Process. Technol., 90, 1502 (2009). https://doi.org/10.1016/j.fuproc.2009.07.016
  2. H. Huo, M. Wang, C. Bloyd, and V. Putsche, Life-Cycle Assessment of Energy and Greenhouse Gas Effects of Soybean- Derived Biodiesel and Renewable Fuels, Argonne national lab., (2008).
  3. M. E. Borges and L. Díaz, Renew. Sust. Energ. Rev., 16, 2839 (2012). https://doi.org/10.1016/j.rser.2012.01.071
  4. A. P. Singh Chouhan and A. K. Sarma, Renew. Sust. Energ. Rev., 15, 4378 (2011). https://doi.org/10.1016/j.rser.2011.07.112
  5. D. E. Lopez, J. G. Goodwin Jr., D. A. Bruce, and E. Lotero., Appl Catal A : Gen, 295, 97 (2005). https://doi.org/10.1016/j.apcata.2005.07.055
  6. T. Wan, P. Yu, S. Gong, Q. Li, and Y. Luo, Korean J. Chem. Eng., 25, 998 (2008). https://doi.org/10.1007/s11814-008-0161-8
  7. Y. Fan, Q. Wang, X. Yang, J. Yao, and G. Wang, Chinese J. Chem. Eng., 17, 883 (2009). https://doi.org/10.1016/S1004-9541(08)60292-X
  8. H. J. Kim, K. E. Jeong, S. Y. Jeong, Y. K. Park, and J. K. Jeon, Clean Technol., 16, 12 (2010).
  9. Y. K Park, S. Y. Kim, H. Kim, K. Y. Jung, S. Y. Jeong, K. E. Jeong, and J. K. Jeon, Korean J. Chem. Eng., 27, 459 (2010). https://doi.org/10.1007/s11814-010-0086-x
  10. H. Hattori, Chem. Rev., 95, 537 (1995). https://doi.org/10.1021/cr00035a005
  11. X. Liang, S. Gao, J. Yang, and M. He, Renew. Energy, 34, 2215 (2009). https://doi.org/10.1016/j.renene.2009.01.009