Removal of Nitrogen Oxides Using $Cu-Mn/CeO_2-ZrO_2$ Catalyst

$Cu-Mn/CeO_2-ZrO_2$ 촉매를 이용한 질소산화물 제거 반응

  • Jeon, Mi-Jin (Graduate School of Energy and Environmental System Engineering, University of Seoul) ;
  • Jeon, Jong-Ki (Department of Chemical Engineering, Kongju National University) ;
  • Park, Sung Hoon (Department of Environmental Engineering, Sunchon National University) ;
  • Park, Young-Kwon (Graduate School of Energy and Environmental System Engineering, University of Seoul)
  • 전미진 (서울시립대학교 에너지환경시스템공학과) ;
  • 전종기 (공주대학교 화학공학과) ;
  • 박성훈 (순천대학교 환경공학과) ;
  • 박영권 (서울시립대학교 에너지환경시스템공학과)
  • Published : 2012.06.10

Abstract

The effect of the addition of Cu on the catalytic activity of the $Mn/CeO_2-ZrO_2$ catalyst for the low-temperature SCR reaction of NO was investigated. Three different amounts of Cu, 5, 10, and 15 wt%, were impregnated on the $Mn/CeO_2-ZrO_2$ catalyst. The characteristics of the synthesized catalysts were examined by BET, XRD, XPS, and $H_2-TPR$ analyses. The de-NOx efficiency of the Cu-added catalysts increased with the amount of Cu. When 15 wt% Cu was impregnated, the deNOx efficiency was the highest, reaching as high as 99%. The increased deNOx efficiency is attributed to the enhanced reducing power stemming from the interaction between Mn and Cu on the catalyst surface.

본 연구에서는 NO의 저온 SCR 반응에서 구리 첨가가 $Mn/CeO_2-ZrO_2$ 촉매의 활성에 미치는 영향을 알아보았다. 이를 위하여 $Mn/CeO_2-ZrO_2$ 촉매에 구리가 각각 5, 10, 15 wt% 첨가된 세가지 촉매의 활성을 조사하였다. 촉매의 특성은 BET, XRD, XPS, $H_2-TPR$을 통해 분석하였다. 구리가 첨가된 촉매의 질소산화물 저감 효율을 측정한 결과 Cu 농도가 증가할수록 활성이 증가하였으며 Cu 15 wt%가 담지하였을 경우 질소산화물 저감효율이 99%까지 도달하는 등 가장 높은 저감효율을 나타내었다. 이는 표면의 망간과 구리의 interaction에 의한 환원의 향상이 촉매 효율 증가의 원인으로 여겨진다.

Keywords

References

  1. H. Bosch and F. Janssen, Catal. Today, 2, 369 (1988). https://doi.org/10.1016/0920-5861(88)80002-6
  2. G. Qi and R. T. Yang, Appl. Catal. B : Environ., 44, 217 (2003). https://doi.org/10.1016/S0926-3373(03)00100-0
  3. T. Valdes-Solis, G. Marban, and A. B. Fuertes., Appl. Catal. B : Environ., 46, 261 (2003). https://doi.org/10.1016/S0926-3373(03)00217-0
  4. N. Isabella, D. Lorenzo, L. Luca, G. Elio, and F. Pio, Appl. Catal. B : Environ., 35, 31 (2001). https://doi.org/10.1016/S0926-3373(01)00229-6
  5. X. Tang, J. Hao, H. Yi, and J. Li, Catal. Today, 126, 406 (2007). https://doi.org/10.1016/j.cattod.2007.06.013
  6. J. P. Chen and R. T Yang, Appl. Catal. A : Gen., 80, 135 (1992). https://doi.org/10.1016/0926-860X(92)85113-P
  7. M. Kang, E. D. Park, J. M. Kim, and J. E. Yie, Appl. Catal. A : Gen., 327, 261 (2007). https://doi.org/10.1016/j.apcata.2007.05.024
  8. L. Singoredjo, R. Korver, F. Kapteijn, and J. Moulijn, Appl. Catal. B : Environ., 1, 297 (1992). https://doi.org/10.1016/0926-3373(92)80055-5
  9. M. Richter, A. Trunschke, U. Bentrup, K. W. Brzezinka, E. Schreier, M. Schneider, M. M. Pohl, and R. Fricke, J. Catal., 206, 98 (2002). https://doi.org/10.1006/jcat.2001.3468
  10. G. S. Qi, R. T. Yang, and R. Chang, Catal. Lett., 87, 67 (2003). https://doi.org/10.1023/A:1022809328087
  11. Y. J. Kim, H. J. Kwon, I. S. Nam, J. W. Choung, J. K. Kil, H. J. Kim, M. S. Cha, and G. K. Yeo, Catal. Today, 151, 244 (2010). https://doi.org/10.1016/j.cattod.2010.02.074
  12. M. R. Morales, B. P. Barbero, and L. E. Cadus, Appl. Catal. B : Environ., 67, 229 (2006). https://doi.org/10.1016/j.apcatb.2006.05.006
  13. http://www.lasurface.com.
  14. M. Kramer, T. Schmidt, K. Stowe, and W. F. Maier, Appl. Catal. A : Gen., 302, 257 (2006). https://doi.org/10.1016/j.apcata.2006.01.018
  15. A. Sultana, T. Nanba, M. Haneda, M. Sasaki, and H. Hamada, Appl. Catal. B : Environ., 101, 61 (2010). https://doi.org/10.1016/j.apcatb.2010.09.007