A Study on the Decomposition of Dissolved Ozone and Phenol using Ozone/Activated Carbon Process

오존/활성탄 공정을 이용한 용존 오존 및 페놀의 분해에 관한 연구

  • Choi, Jae Won (School of Chemical Engineering, University of Ulsan) ;
  • Lee, Hak Sung (School of Chemical Engineering, University of Ulsan)
  • Published : 2012.10.10

Abstract

The catalytic effect induced by activated carbon (AC) was evaluated during the phenol treatment using an ozone/AC ($O_{3}/AC$) process. In the case of the addition of AC to the ozone only process, the decomposition efficiency of dissolved ozone and phenol increased with increasing the amount of AC input. It was that the OH radical generated from the decomposition of dissolved ozone by AC had an effect on the removal of phenol. It was shown as the catalytic effect of AC ([$\Delta$phenol]/$[{\Delta}O_{3}]_{AC}$) in this study. The maximum catalytic effect was approximately 2.13 under 10~40 g/L of AC input. It approached to the maximum catalytic effect after 40 min of reaction with 10 and 20 g/L of AC input, while the reaction time reached to the maximum catalytic effect under 30 and 40 g/L of AC input was approximately 20 min. Moreover, the removal ratios of total organic carbon (TOC) for ozone only process and ozone/AC process were 0.23 and 0.63 respectively.

오존/활성탄 공정을 이용하여 페놀을 처리 할 경우, 활성탄에 의해 나타나는 촉매효과에 관한 연구를 수행하였다. 오존 단독공정에 활성탄을 추가할 경우, 활성탄 투입량이 증가할수록 용존 오존 및 페놀의 분해효율이 증가하는 것으로 나타났다. 이는 활성탄에 의해서 용존 오존이 분해되어 생성된 수산화 라디칼이 페놀 제거에 영향을 미쳤으며, 본 연구에서는 활성탄의 촉매효과([$\Delta$phenol] / $[{\Delta}O_{3}]_{AC}$)로 나타내었다. 활성탄 10~40 g/L 투입 시, 모든 활성탄의 최대 촉매효과 값은 $2.0\;{\pm}\;0.1$로 나타났지만, 10 g/L와 20 g/L를 투입한 경우, 40 min 경과 후 최대 촉매효과에 근접한 반면, 활성탄 30 g/L와 40 g/L를 투입한 경우, 반응 20 min 경과 후 최대 촉매효과에 도달하였다. 또한 Total Organic Carbon (TOC, 총유기탄소)의 제거율은 오존 단독공정에서 0.23으로 나타났으며, 오존/활성탄 공정에서는 0.63으로 나타났다.

Keywords

References

  1. K. H. Lee, D. Y. Jang, and T. J. Park, J. Environ. Sci., 5, 51 (1996).
  2. B. C. Lee, S. H. Lee, and C. H. Lee, J. KSEE, 29, 1085 (2007).
  3. J. D. Park, J. H. Seo, and H. S. Lee, J. Environ. Health Sci., 31, 404 (2005).
  4. W. H. Glaze and J. W. Kang, Ind. Eng. Chem. Res., 28, 1573 (1989). https://doi.org/10.1021/ie00095a001
  5. W. H. Glaze, Environ. Sci. Technol., 21, 224 (1987). https://doi.org/10.1021/es00157a001
  6. H. Tomiyasu, H. Fukutomi, and G. Gordon, Inorg. Chem., 24, 2962 (1985). https://doi.org/10.1021/ic00213a018
  7. C. G. Hewes and R. P. Davison, AIChE J., 17, 141 (1971). https://doi.org/10.1002/aic.690170129
  8. B. S. Oh, K. S. Kim, and J. W. Kang, J. Korean Soc. Water Quality, 21, 153 (2005).
  9. J. W. Choi, J. Y. Yoon, J. D. Park, and H. S. Lee, Appl. Chem. Eng., 23, 302 (2012).
  10. S. J. Song, B. S. Oh, K. S. Kim, E. T. Lee, S. J. Na, and J. W. Kang, J. KSEE, 26, 52 (2004).
  11. H. Bader and J. Hoigne, Water Res., 15, 449 (1981). https://doi.org/10.1016/0043-1354(81)90054-3
  12. U. Jans and J. Hoigne, Ozone Sci. Eng., 20, 67 (1998). https://doi.org/10.1080/01919519808547291
  13. S. H. Lin and C. L. Lai, Water Res., 34, 763 (2000). https://doi.org/10.1016/S0043-1354(99)00214-6
  14. B. Legube and N. K. V. Leitner, Catal. Today, 53, 61 (1999). https://doi.org/10.1016/S0920-5861(99)00103-0
  15. J. Hoigne and H. Bader, Water Res., 17, 173 (1983). https://doi.org/10.1016/0043-1354(83)90098-2
  16. J. Hoigne and H. Bader, Water Res., 17, 185 (1983). https://doi.org/10.1016/0043-1354(83)90099-4
  17. G. V. Buxton, C. L. Greenstock, W. P. Helman, and A. B. Ross, J. Phys. Chem. Data, 17, 513 (1988). https://doi.org/10.1063/1.555805
  18. M. S. Elovitz and U. Gunten, Ozone Sci. Eng., 21, 239 (1999). https://doi.org/10.1080/01919519908547239
  19. S. D. Chang and P. C. Singer, J. AWWA, 83, 71 (1991).
  20. J. P. Gould and W. J. Jr. Weber, J. WPCF, 48, 47 (1976).
  21. J. Staehelln and J. Hoigne, Environ. Sci. Technol., 19, 1206 (1985). https://doi.org/10.1021/es00142a012