A Study on Reaction Characteristics of $CO_2$ Conversion Methanation over Pt Catalysts for Reduction of GHG

온실가스 저감을 위한 Pt계 촉매상 $CO_2$ Methanation 전환반응 특성에 관한 연구

  • Hong, Sung Chang (Department of Environmental Energy Engineering, Kyonggi University)
  • 홍성창 (경기대학교 환경에너지시스템공학과)
  • Published : 2012.12.10

Abstract

This study presents the $CO_2$ methanation reaction on Pt catalysts for reducing the amount of $CO_2$, one of greenhouse gases. The AlO(OH) of $Al_2O_3$precusor was used as a support via a thermal treatment and the Pt was used as an active metal. In XRD results, it was confirmed that the Pt was well dispersed and the support existed as the gamma $Al_2O_3$phase. The $Pt/Al_2O_3$ catalyst calcined at $600^{\circ}C$ showed the highest conversion efficiency and selectivity.

온실가스인 $CO_2$를 저감하기 위해 Pt계 촉매상 $CO_2$ methanation 반응에 관한 연구를 수행하였다. $Al_2O_3$의 전구체인 AlO(OH)를 열처리하여 지지체로 사용하였으며, 활성금속으로서 Pt를 사용하였다. XRD 분석결과, 활성금속인 Pt가 고르게 잘 분산되었음이 관찰되었으며, 지지체는 gamma phase의 $Al_2O_3$로 존재함을 확인할 수 있었다. 활성실험을 통해 $600^{\circ}C$로 열처리된 $Pt/Al_2O_3$ 촉매가 가장 우수한 전환율 및 선택도를 나타냄을 확인하였다.

Keywords

References

  1. S. S. Kim, H. H. Lee, and S. C. Hong, Appl. Catal. A. Gen., 100, 423 (2012).
  2. S. S. Kim, H. H. Lee, and S. C. Hong, Appl. Catal. B. Environ., 100, 119 (2012)
  3. S. S. Kim, K. H. Park, and S. C. Hong, Fuel. Process. Tech. article in press.
  4. S. S. Kim, Ph. D. Dissertation, Kyonggi University (2012).
  5. K. P. Brooks, J. L. Hu, H. Y. Zhu, and R. J. Kee, Chem. Eng. Sci., 62, 1161 (2007). https://doi.org/10.1016/j.ces.2006.11.020
  6. J. D. Holladay, K. P. Brooks, R. S. Wegeng, J. L. Hu, J. Sanders, and S. Baird, Catal. Today, 120, 35 (2007). https://doi.org/10.1016/j.cattod.2006.07.019
  7. J. L. Hu, K. P. Brooks, J. D. Holladay, D. T. Howe, and T. M. Simon, Catal. Today, 125, 103 (2007). https://doi.org/10.1016/j.cattod.2007.01.067
  8. G. M. Shashidhara, and M. Ravindram, React. Kinet. Catal. Lett., 37, 451 (1988). https://doi.org/10.1007/BF02062098
  9. S. Furukawa, M. Okada, and Y. Suzuki, Energy Fuels, 13, 1074 (1999). https://doi.org/10.1021/ef990039t
  10. M. Yamasaki, H. Habazaki, K. Asami, K. Izumiya, and K. Hashimoto, Catal. Commun., 7, 24 (2006). https://doi.org/10.1016/j.catcom.2005.08.005
  11. H. Habazaki, M. Yamasaki, A. Kawashima, and K. Hashimoto, Appl. Organometal. Chem., 14, 803 (2000). https://doi.org/10.1002/1099-0739(200012)14:12<803::AID-AOC89>3.0.CO;2-J
  12. J. M. Rynkowski, T. Paryjczak, A. Lewicki, M. I. Szynkowska, T. P. Maniecki, and W. K. Jozwiak, React. Kinet. Catal. Lett., 71, 55 (2000). https://doi.org/10.1023/A:1010326031095
  13. M. Marwood, F. Vanvyve, R. Doepper, and A. Renken, Catal. Today, 20, 437 (1994). https://doi.org/10.1016/0920-5861(94)80137-1
  14. Z.-G. Zhang and G. Xu, Catal. Commun., 8, 1953 (2007). https://doi.org/10.1016/j.catcom.2007.03.019
  15. S. Mori, W. C. Xu, T. Ishidzuki, N. Ogasawara, J. Imai, and K. Kobayashi, Appl. Catal. A, 137, 255 (1996). https://doi.org/10.1016/0926-860X(95)00319-3
  16. M. Bowker, T. J. Cassidy, A. T. Ashcroft, and A. K. Cheetham, J. Catal., 143, 308 (1993). https://doi.org/10.1006/jcat.1993.1276
  17. C. de Leitenburg, A. Trovarelli, and J. Kaspar, J. Catal., 166, 98 (1997). https://doi.org/10.1006/jcat.1997.1498
  18. J. N. Park and E. W. McFarland, J. Catal., 266, 92 (2009). https://doi.org/10.1016/j.jcat.2009.05.018
  19. J. T. Richardson. Principles of Catalyst Development. Springer, New York (1989).
  20. N. Y. Topsoe, J. A. Dumesic, and H. Topsoe, J. Catal., 151, 241 (1995). https://doi.org/10.1006/jcat.1995.1025