Synthesis of Dialklyaminoalkyl Phosphonic Acid and Bis(dialklyaminoalkyl) Phosphinic Acid Derivatives

디알킬아미노알킬 포스폰산과 비스-디알킬아미노알킬 포스핀산 유도체의 합성

  • Chung, Yeong-Jin (Department of Fire Protection Engineering, Kangwon National University) ;
  • Jin, Eui (Fire & Disaster Prevention Research Center, Kangwon National University)
  • 정영진 (강원대학교 소방방재공학과) ;
  • 진의 (강원대학교 소방방재연구센터)
  • Published : 2012.12.10

Abstract

Six kinds of new aminoalkyl phosphonic acid or aminoalkyl phosphinic acid derivatives with mono-dialkylamino, or di-dialkylamino functional groups in the molecule were synthesized and their smoke densities were tested. The aminoalkyl phposphonic acid or aminoalkyl phosphinic acid derivatives were synthesized with quantitative yields of 90~98.6% by one step reaction of the phosphorus acid or hypo phosphorous acid with amine and aldehyde. The smoke density was measured by the ASTM E 662 method. Values of the smoke density were obtained from 224.5 to 256.6. The smoke density of the compounds with two aminoalkyl structures decreased more than that of compounds with one aminoalkyl structure. In addition, there was no correlation between the smoke density and the number of carbon atoms in the alkyl group attached to the amino group.

모노-디알킬 아미노 또는 디-디알킬 아미노 기능기를 분자 내에 갖는 6종의 새로운 아미노알킬 포스폰산 또는 아미노알킬 포스핀산 유도체들을 합성하고, 그들의 연기밀도를 측정하였다. 이 화합물들은 아민 및 알데히드에 아인산 또는 하이포 아인산을 첨가하여 한 단계로 반응시켜 인산에 한 개 또는 2개의 아미노기를 갖는 화합물로서 거의 정량적으로 90-98.6%의 수율을 얻었다. 이들의 연기밀도 시험은 ASTM E 662의 방법으로 측정하였으며, 시험결과 연기밀도 (Ds)값이 224.5~256.6으로 측정되었으며, 인산구조에 2개의 아미노기를 갖는 화합물이 1개의 아미노기를 갖는 화합물 보다 연기밀도가 감소되었다. 또한 아미노기에 연결된 알킬기의 탄소수와 연기밀도 사이에는 특별한 관련이 없었다.

Keywords

References

  1. G. L. Nelson, Fire and Polymers, American Chemical Society, Washington DC. (1990).
  2. M. Lewis, S. M. Altas, and E. M. Pearce, Flame-Retardant Polymer Materials, Plenum Press, New York (1975).
  3. S. J. Park, S. W. Song, J. R. Lee, B. G. Min, and J. S. Shin, J. Korean, Ind. Eng. Chem., 15, 41 (2004).
  4. Y. J. Chung, H. M. Lim, E. Jin, and J. K. Oh, Appl. Chem. Eng., 22, 439 (2011).
  5. M. L. Hardy, Polym. Degrad. Stab., 64, 545 (1999). https://doi.org/10.1016/S0141-3910(98)00141-4
  6. Y. Tanaka, Epoxy Resin Chemistry and Technology, Marcel Dekker, New York (1988).
  7. Korean Patent 2010-0128046 (2010).
  8. H. Y. Ma and Z. P. Fang, Thermochimica Acta, 543, 130 (2012). https://doi.org/10.1016/j.tca.2012.05.021
  9. Korean Patent 2011-34978 (2011).
  10. ASTM E 662, Test method for Specific Optical Density of Smoke Generated by Solid Materials (2009).
  11. ISO 5660-2, Reaction-to-Fire Tests-Heat Release, Smoke Production and Mass Loss Rate-Part 2 : Smoke Production Rate (Dynamic measurement) (2002).
  12. D. H. Lee, W. S. Jung, D. S. Park, and S. O. Kim, Smoke Density Characteristics of the FRP Composite Panel for Railcars, Proceeding of 2012 Spring Annual Conference, KIFSE, 505 (2002).
  13. E. K. Fields, J. Am. Chem. Soc., 74, 1528 (1952). https://doi.org/10.1021/ja01126a054
  14. M. I. Kabachnik and T. J. Medved, Dokl. Akad. Nauk. SSSR., 83, 689 (1952).
  15. M. I. Kabachnik and T. J. Medved, Cehm. Abstr., 47, 2724 (1953).
  16. V. S. Abramov and V. I. Brabanov, Zh. Obsch. Khim., 36, 1830 (1966).
  17. A. N. Pudovik and J. P. Kitaev, Zh. Obshch. Khim., 467, 22 (1952).
  18. M. I. Kabachnik, Z. Chem., 1, 289 (1961).
  19. M. I. Kabachnik, C.A.57, 7293d (1962).