Transesterification of Soybean Oil Using KOH/KL Zeolite and Ca/Undaria pinnatifida Char

KOH/KL제올라이트 및 Ca/미역촤를 이용한 대두유의 전이에스테르화 반응

  • Jo, Yong Beom (Graduate School of Energy and Environmental System Engineering, University of Seoul) ;
  • Park, Sung Hoon (Department of Environmental Engineering, Sunchon National University) ;
  • Jeon, Jong-Ki (Department of Chemical Engineering, Kongju National University) ;
  • Park, Young-Kwon (Graduate School of Energy and Environmental System Engineering, University of Seoul)
  • 조용범 (서울시립대학교 에너지환경시스템 공학과) ;
  • 박성훈 (순천대학교 환경공학과) ;
  • 전종기 (공주대학교 화학공학과) ;
  • 박영권 (서울시립대학교 에너지환경시스템 공학과)
  • Published : 2012.12.10

Abstract

Solid base catalysts for biodiesel production were synthesized by impregnating basic metal species on two support materials with large specific surface area : zeolite and pyrolysis char. KL zeolite and Undaria pinnatifida char were impregnated with KOH aqueous solution and calcium nitrate solution, respectively, to enhance the basic strength. The catalysts synthesized were characterized using Hammett indicators and $CO_2$-TPD analysis. Biodiesel was produced using soybean oil and methanol over the catalysts synthesized. The content of fatty acid methyl esters was measured to evaluate the catalytic activity. Generally, the catalytic activity increased with increasing quantity of basic metal impregnated but impregnation of excessive amount of metal could cause reduction in the activity.

본 연구에서는 표면적이 높은 제올라이트나 촤를 지지체로 이용해 알칼리금속을 담지시킴으로써 염기 세기를 증가시켜 전이에스테르화 반응에 있어 보다 좋은 활성을 가지는 고체촉매를 만들고자 하였다. 제올라이트는 KOH 수용액으로 담지하였고, 미역촤는 calcium nitrate를 담지하여 염기의 세기를 증가시켰다. Hammett 지시약과 $CO_2$-TPD를 통하여 촉매의 특성을 분석하였다. 대두유과 메탄올을 사용하여 바이오디젤을 합성한 후 지방산 메틸에스테르 함유량을 측정함으로서 촉매의 활성을 알아보았다. 일정량까지는 담지량과 활성이 비례하였으나, 과량 담지 시 오히려 활성이 감소하는 결과를 보였다.

Keywords

References

  1. J. Xuea, T. E. Grift, and A. C. Hansena, Renew. Sustain. Energy Rev., 15, 1098, (2011). https://doi.org/10.1016/j.rser.2010.11.016
  2. J. Shehan, V. Camobreco, J. Duffield, M. Grabski, and H. Shapouri, Life Cycle Inventory of Biodiesel and Petroleum Diesel for Use in an Urban Bus, National Renewable Energy Laboratory (1998).
  3. S. Gryglewicz, Bioresour. Technol., 70, 249 (1999). https://doi.org/10.1016/S0960-8524(99)00042-5
  4. G. J. Suppes, M. A. Dasari, E. J. Doskocil, P. J. Mankidy, and M. J. Goff, Appl. Catal. A: Gen., 257, 213 (2004). https://doi.org/10.1016/j.apcata.2003.07.010
  5. Y. S. Ko and W. S. Ahn, Bull. Korean Chem. Soc., 20, 1 (1999).
  6. H. Gorzawski and W. F. Hoelderich, Appl. Catal. A: Gen, 179, 131 (1999). https://doi.org/10.1016/S0926-860X(98)00307-X
  7. W. Xie and X. Huang, Catal. Lett., 107, 53 (2006). https://doi.org/10.1007/s10562-005-9731-0
  8. W. Xie, X. Huang, and H. Li, Bioresour. Technol., 98, 936 (2007). https://doi.org/10.1016/j.biortech.2006.04.003
  9. E. Rashtizadeh, F. Farzaneh, and, M. Ghandi, Fuel, 89, 3393 (2010). https://doi.org/10.1016/j.fuel.2010.05.039
  10. K. Noiroj, P. Intarapong, A. Luengnaruemitchai, and S. Jai-In, Renew. Energy, 34, 1145 (2009). https://doi.org/10.1016/j.renene.2008.06.015