DOI QR코드

DOI QR Code

Oxidation Behavior around the Stress Corrosion Crack Tips of Alloy 600 under PWR Primary Water Environment

PWR 1차측 환경에서 Alloy 600 응력부식균열 선단 부근에서의 산화 거동

  • Lim, Yun Soo (Nuclear Materials Research Division / Korea Atomic Energy Research Institute) ;
  • Kim, Hong Pyo (Nuclear Materials Research Division / Korea Atomic Energy Research Institute) ;
  • Hwang, Seong Sik (Nuclear Materials Research Division / Korea Atomic Energy Research Institute)
  • 임연수 (한국원자력연구원/원자력재료개발부) ;
  • 김홍표 (한국원자력연구원/원자력재료개발부) ;
  • 황성식 (한국원자력연구원/원자력재료개발부)
  • Received : 2012.07.03
  • Accepted : 2012.08.13
  • Published : 2012.08.31

Abstract

Stress corrosion cracks in Alloy 600 compact tension specimens tested at $325^{\circ}C$ in a simulated primary water environment of pressurized water reactor were analyzed by analytical transmission electron microscopy and secondary ion mass spectroscopy (SIMS). From a fine-probe chemical analysis, oxygen was found on the grain boundary just ahead of the crack tip, and chromium oxides were precipitated on the crack tip and the grain boundary attacked by the oxygen diffusion, leaving a Cr/Fe depletion (or Ni enrichment) zone. The oxide layer inside the crack was revealed to consist of a double (inner and outer) layer. Chromium oxides existed in the inner layer, with NiO and (Ni,Cr) spinels in the outer layer. From the nano-SIMS analysis, oxygen was detected at the locations of intergranular chromium carbides ahead of the crack tip, which means that oxygen diffused into the grain boundary and oxidized the surfaces of the chromium carbides. The intergranular chromium carbide blunted the crack tip, thereby suppressing the crack propagation.

Keywords

References

  1. W. Bamford and J. Hall, Proceedings of the 11th Int'l Conf. on Environmental Degradation of Materials in Nuclear Power Systems, p. 1071, Stevenson, WA (2003).
  2. W. Bamford and J. Hall, Proceedings of the 12th Int'l Conf. on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactor, p. 959, Salt Lake City, Utah (2005).
  3. W. Bamford, G. G. Elder, R. Perdue, and B. Newton, Proceedings of the 13th Int'l Conf. on Environmental Degradation of Materials in Nuclear Power Systems, Whistler, British Columbia (2007).
  4. H. Xu and S. Fyfitch, Proceedings of the 12th Int'l Conf. on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactor, p. 833, Salt Lake City, Utah (2005).
  5. F. P. Ford, Corrosion, 52, 375 (1996). https://doi.org/10.5006/1.3292125
  6. H. K. Birnbaum and P. Sofronis, Mater. Sci. Eng., A, 176A, 191 (1994).
  7. T. Magnin, J. M. Boursier, D. Noel, R. Rios, and F. Vailkant, Proceedings of the 6th Int'l Conf. on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactor, p. 669, San Diego, Calif. (1993).
  8. P. M. Scott, Proceedings of the 9th Int'l Conf. on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactor, p. 3, Newport Beach, Calif. (1999).
  9. L. E. Thomas and S. M. Bruemmer, Corrosion, 56, 572 (2000). https://doi.org/10.5006/1.3280561
  10. P. Laghoutaris, C. Guerre, J. Chene, O. Raquet, M. Sennour, R. Molins, I. De Curieres, P. Scott, and F. Vaillant, ICG-EAC 2008, Bastad, Sweden (2008).
  11. M. Sennour, P. Laghoutaris, C. Guerre, and R. Molins, J. Nuc. Mater., 393, 254 (2009). https://doi.org/10.1016/j.jnucmat.2009.06.014
  12. M. Olszta, L. Thomas, D. Schreiber, and S. Bruemmert, ICG-EAC 2011, Dresden, Germany (2011).
  13. M. A. Hicks and A. C. Pickard, Int. J. of Fracture, 20, 91 (1982). https://doi.org/10.1007/BF01141259
  14. G. A. White, J. Hickling and L. K. Mathews, Proceedings of the 11th Int'l Conf. on Environmental Degradation of Materials in Nuclear Power Systems, p. 166, Stevenson, WA (2003).
  15. Y. S. Lim, H. P. Kim, H. D. Cho and H. H. Lee, Mater. Char., 60, 1496 (2009). https://doi.org/10.1016/j.matchar.2009.08.005
  16. R. H. Bricknell and D. A, Woodford, Acta. Metall., 30, 257 (1982). https://doi.org/10.1016/0001-6160(82)90064-5
  17. R. G. Iacocca and D. A, Woodford, Metall. Trans. A, 19A, 2305 (1988). https://doi.org/10.1007/BF02645054
  18. R. W. Staehle and Z. Fang, Proceedings of the 9th Int'l Conf. on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactor, p. 69, Newport Beach, Calif. (1999).
  19. J. Panter, B. Viguier, J.-M. Cloue, M. Foucault, P. Combrade, and E. Andrieu, J. Nuc. Mater., 348, 213 (2006). https://doi.org/10.1016/j.jnucmat.2005.10.002
  20. J. Robertson, Corros. Sci., 32, 443 (1991). https://doi.org/10.1016/0010-938X(91)90125-9
  21. G. P. Airey, Optimization of Metallurgical Variables to Improve Corrosion Resistance of Inconel 600, EPRI Report No. NP-3051, July (1983).
  22. S. M. Bruemmer and C. H. Henager Jr., Scripta Metall., 20, 909 (1986). https://doi.org/10.1016/0036-9748(86)90465-5
  23. S. S. Hwang, D. J. Kim, Y. S. Lim, G. S. Kim, J. Park, and H. P. Kim, Corros. Sci. Tech., 7, 187 (2008).
  24. K. Fujii, H. Miura, and K. Fukuya, ICG-EAC 2011, Dresden, Germany (2011).

Cited by

  1. Alloy 600의 결정립계 산화에 대한 표면 변형의 영향 vol.19, pp.3, 2012, https://doi.org/10.14773/cst.2020.19.3.138