DOI QR코드

DOI QR Code

Evaluation of Cavitation Characteristics in Seawater on HVOF Spray Coated Layer with WC-27NiCr Material for Cu Alloy

구리합금에 대한 WC-27NiCr 초고속화염용사 코팅층의 해수내 캐비테이션 특성 평가

  • 한민수 (목포해양대학교 기관시스템 공학부) ;
  • 김민성 ((주)디섹) ;
  • 장석기 (목포해양대학교 기관시스템 공학부) ;
  • 김성종 (목포해양대학교 기관시스템 공학부)
  • Received : 2012.12.03
  • Accepted : 2012.12.24
  • Published : 2012.12.31

Abstract

Copper alloys are commonly applied to ship's propellers, pumps and valves which are serviced in seawater due to their good castability and corrosion resistance. In the environment of high flow velocity, however, erosion damage predominates over corrosion damage. In particular, the cavitation in seawater environment accelerates surface damage to copper alloys, resulting in degradation of products and economic losses and also threatening safety. The surface was coated with WC-27NiCr by high velocity oxygen fuel(HVOF) spraying technique to attain durability and cavitation resistance of copper alloys under high velocity/pressure flow. The cavitation test was performed for the WC-27NiCr coating deposited by HVOF in seawater at the amplitude of $30{\mu}m$ with seawater temperature. The cavitation at $15^{\circ}C$ caused exfoliation of the coating layer in 17.5 hours while that of $25^{\circ}C$ caused the exfoliation in 12.5 hours. When the temperature of seawater was elevated to $25^{\circ}C$ from $15^{\circ}C$, more damage was induced by over 160%. Although WC-27NiCr has good durability, corrosion resistance and eletrochemical stability, the cavitation damage rate of the coating layer could remarkably increase at the elevated temperatures under cavitation environments.

Keywords

References

  1. G. B. Kwon, D. H. Cho, Y. K. Chang, and Y. N. Park, J. Kor. Inst. Surf. Eng., 35, 5 (2002).
  2. T.-Y. Cho, J.-H. Yoon, K.-S. Kim, K.-O. Song, S.-J. Youn, H.-G. Chun, and S.-Y. Hwang, Corros. Sci. Tech., 6, 159 (2007).
  3. J. E. Cho, B. G. Seong, S. Y. Hwang, and K. Y. Kim, Corros. Sci. Tech., 31, 495 (2002).
  4. R. Thrope, H. Kopech, and N. Gagne, Adv. Mater. Proc., 157, 27 (2000).
  5. B. M. Kim, S. Y. Hwang, H. S. Choe, and C. H. Lee, Kor. J. Met. Mater., 41, 695 (2003).
  6. K. S. Kim, N. K. Baek, J. H. Yoon, T. Y. Cho, S. J. Youn, S. K. Oh, S. Y. Hwang, and H. G. Chun, J. Kor. Inst. Surf. Eng., 39, 179 (2006).
  7. S. G. Kang, T. G. Suh, and S. H. Paek, J. Corros. Sci. of Kor., 12, 11 (1983).
  8. J. M. Guilemany, N. Espallargas, P. H. Suegama, and A. V. Benedetti, Corros. Sci., 48, 2998 (2006). https://doi.org/10.1016/j.corsci.2005.10.016
  9. T. S. Sidhu, S. Prakash, and R. D. Agrawal, Surf. Coat. Tech., 201, 792 (2006). https://doi.org/10.1016/j.surfcoat.2005.12.030
  10. A. G. Petersen, D. Klenerman, and W. M. Hedges, Corrosion, 60, 187 (2004). https://doi.org/10.5006/1.3287719
  11. Annual Book of ASTM standards G32-92, p. 110, (1992).
  12. J. T. Chang, C. H. Yeh, J. L. He, and K. C. Chen, Wear, 255, 162 (2003). https://doi.org/10.1016/S0043-1648(03)00199-6
  13. Zhang Yun-qian, Ding Zhang-Xiong, and Fan Yi, Hot Worki. Tech., 39, 25 (2010).
  14. S. Matthews, B. James, and M. Hyland, Corros. Sci., 51, 1172 (2009). https://doi.org/10.1016/j.corsci.2009.02.027
  15. K.-J. Euh, S.-B. Kang, and B.-Mo Yang, Kor. J. Met. Mater., 45, 292 (2007).
  16. Heon-Young Ha, Chan-Jin Park, and Hyuk-Sang Kwon, Corros. sci., 49, 1266 (2007). https://doi.org/10.1016/j.corsci.2006.08.017
  17. Y. Sekine and H. Soyama, Surf. Tech., 203, 2254 (2009). https://doi.org/10.1016/j.surfcoat.2009.02.018
  18. S. Mattnew, B. James, and M. Hyland, Corros. Sci., 51, 1172 (2009). https://doi.org/10.1016/j.corsci.2009.02.027
  19. A. A. Bouudi, M. S. J. Hashmi, and B. S. Yilbas, J. Mater. Proces. Tech., 173, 44 (2006). https://doi.org/10.1016/j.jmatprotec.2005.11.014

Cited by

  1. Cavitation Damage Behavior of Inconel 625 Coating Layer by Arc Thermal Spraying Method in Sea Water vol.48, pp.6, 2015, https://doi.org/10.5695/JKISE.2015.48.6.349