DOI QR코드

DOI QR Code

Gap Junction Contributions to the Goldfish Electroretinogram at the Photopic Illumination Level

  • Kim, Doh-Yeon (Natural Sciences Section, Department of Medical Lifescience, College of Medicine, The Catholic University of Korea) ;
  • Jung, Chang-Sub (Natural Sciences Section, Department of Medical Lifescience, College of Medicine, The Catholic University of Korea)
  • 투고 : 2012.05.03
  • 심사 : 2012.05.30
  • 발행 : 2012.06.30

초록

Understanding how the b-wave of the electroretinogram (ERG) is generated by full-field light stimulation is still a challenge in visual neuroscience. To understand more about the origin of the b-wave, we studied the contributions of gap junctions to the ERG b-wave. Many types of retinal neurons are connected to similar and different neighboring neurons through gap junctions. The photopic (cone-dominated) ERG, stimulated by a small light beam, was recorded from goldfish (Carassius auratus) using a corneal electrode. Data were obtained before and after intravitreal injection of agents into the eye under a photopic illumination level. Several agents were used to affect gap junctions, such as dopamine D1 and D2 receptor agonists and antagonists, a nitric oxide (NO) donor, a nitric oxide synthase (NOS) inhibitor, the gap junction blocker meclofenamic acid (MFA), and mixtures of these agents. The ERG b-waves, which were enhanced by MFA, sodium nitroprusside (SNP), SKF 38393, and sulpiride, remained following application of a further injection of a mixture with MFA. The ERG b-waves decreased following $N^G$-nitro-L-arginine methyl ester (L-NAME), SCH 23390, and quinpirole administration but were enhanced by further injection of a mixture with MFA. These results indicate that gap junction activity influences b-waves of the ERG related to NO and dopamine actions.

키워드

참고문헌

  1. Bloomfield SA, Volgyi B. The diverse functional roles and regulation of neuronal gap junctions in the retina. Nat Rev Neurosci. 2009;10:495-506.
  2. Werblin FS, Dowling JE. Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. J Neurophysiol. 1969;32:339-355. https://doi.org/10.1152/jn.1969.32.3.339
  3. Kaneko A. Receptive field organization of bipolar and amacrine cells in the goldfish retina. J Physiol. 1973;235:133-153. https://doi.org/10.1113/jphysiol.1973.sp010381
  4. Naka KI, Nye PW. Role of horizontal cells in organization of the catfish retinal receptive field. J Neurophysiol. 1971;34:785-801. https://doi.org/10.1152/jn.1971.34.5.785
  5. Marchiafava PL. Horizontal cells influence membrane potential of bipolar cells in the retina of the turtle. Nature. 1978;275:141-142. https://doi.org/10.1038/275141a0
  6. Arai I, Tanaka M, Tachibana M. Active roles of electrically coupled bipolar cell network in the adult retina. J Neurosci. 2010;30:9260-9270. https://doi.org/10.1523/JNEUROSCI.1590-10.2010
  7. Cook JE, Becker DL. Gap junctions in the vertebrate retina. Microsc Res Tech. 1995;31:408-419. https://doi.org/10.1002/jemt.1070310510
  8. Marc RE, Liu WL, Muller JF. Gap junctions in the inner plexiform layer of the goldfish retina. Vision Res. 1988;28:9-24. https://doi.org/10.1016/S0042-6989(88)80002-6
  9. Saito T, Kujiraoka T. Characteristics of bipolar-bipolar coupling in the carp retina. J Gen Physiol. 1988;91:275-287. https://doi.org/10.1085/jgp.91.2.275
  10. DeVries SH, Schwartz EA. Modulation of an electrical synapse between solitary pairs of catfish horizontal cells by dopamine and second messengers. J Physiol. 1989;414:351-375. https://doi.org/10.1113/jphysiol.1989.sp017692
  11. DeVries SH, Schwartz EA. Hemi-gap-junction channels in solitary horizontal cells of the catfish retina. J Physiol. 1992;445:201-230. https://doi.org/10.1113/jphysiol.1992.sp018920
  12. Lu C, McMahon DG. Modulation of hybrid bass retinal gap junctional channel gating by nitric oxide. J Physiol. 1997;499:689-699. https://doi.org/10.1113/jphysiol.1997.sp021961
  13. Lasater EM, Dowling JE. Dopamine decreases conductance of the electrical junctions between cultured retinal horizontal cells. Proc Natl Acad Sci USA. 1985;82:3025-3029. https://doi.org/10.1073/pnas.82.9.3025
  14. Piccolino M, Neyton J, Gerschenfeld HM. Decrease of gap junction permeability induced by dopamine and cyclic adenosine 3':5'-monophosphate in horizontal cells of turtle retina. J Neurosci. 1984;4:2477-2488.
  15. Hedden WL Jr, Dowling JE. The interplexiform cell system. II. Effects of dopamine on goldfish retinal neurones. Proc R Soc Lond B Biol Sci. 1978;201:27-55. https://doi.org/10.1098/rspb.1978.0031
  16. Murakami M, Miyachi EI, Takahadhi KI. Modulation of gap juctions between horizontal cells by second messengers. Prog Retinal Eye Res. 1995;14:197-221. https://doi.org/10.1016/1350-9462(95)90003-4
  17. McMahon DG, Brown DR. Modulation of gap-junction channel gating at zebrafish retinal electrical synapses. J Neurophysiol. 1994;72:2257-2268. https://doi.org/10.1152/jn.1994.72.5.2257
  18. Baldridge WH, Ball AK, Miller RG. Dopaminergic regulation of horizontal cell gap junction particle density in goldfish retina. J Comp Neurol. 1987;265:428-436. https://doi.org/10.1002/cne.902650310
  19. Stell WK. Inputs to bipolar cell dendrites in goldfish retina. Sens Processes. 1978;2:339-349.
  20. Saito T, Kondo H, Toyoda J. Rod and cone signals in the on-center bipolar cell: their different ionic mechanisms. Vision Res. 1978;18:591-595. https://doi.org/10.1016/0042-6989(78)90208-0
  21. Malchow RP, Yazulla S. Separation and light adaptation of rod and cone signals in the retina of the goldfish. Vision Res. 1986;26:1655-1666. https://doi.org/10.1016/0042-6989(86)90053-2
  22. Hughes A, Saszik S, Bilotta J, Demarco PJ Jr, Patterson WF 2nd. Cone contributions to the photopic spectral sensitivity of the zebrafish ERG. Vis Neurosci. 1998;15:1029-1037. https://doi.org/10.1017/S095252389815602X
  23. Hood DC, Finkelstein MA. Sensitivity to light. In: Boff KR, Kaufman L, Thomas JP eds, Handbook of Perception and Human Performance. New York: Wiley; 1986. 5-1-5-66 p.
  24. Kim SH, Jung CS. The role of the pattern edge in goldfish visual motion detection. Korean J Physiol Pharmacol. 2010;14:413-417. https://doi.org/10.4196/kjpp.2010.14.6.413
  25. Liu CR, Xu L, Zhong YM, Li RX, Yang XL. Expression of connexin 35/36 in retinal horizontal and bipolar cells of carp. Neuroscience. 2009;164:1161-1169. https://doi.org/10.1016/j.neuroscience.2009.09.035
  26. O'Brien J, al-Ubaidi MR, Ripps H. Connexin 35: a gap-junctional protein expressed preferentially in the skate retina. Mol Biol Cell. 1996;7:233-243. https://doi.org/10.1091/mbc.7.2.233
  27. Condorelli DF, Parenti R, Spinella F, Trovato Salinaro A, Belluardo N, Cardile V, Cicirata F. Cloning of a new gap junction gene (Cx36) highly expressed in mammalian brain neurons. Eur J Neurosci. 1998;10:1202-1208. https://doi.org/10.1046/j.1460-9568.1998.00163.x
  28. Veruki ML, Hartveit E. Meclofenamic acid blocks electrical synapses of retinal AII amacrine and on-cone bipolar cells. J Neurophysiol. 2009;101:2339-2347. https://doi.org/10.1152/jn.00112.2009
  29. Pan F, Mills SL, Massey SC. Screening of gap junction antagonists on dye coupling in the rabbit retina. Vis Neurosci. 2007;24:609-618. https://doi.org/10.1017/S0952523807070472
  30. Tomita T, Yanagida T. Origins of the ERG waves. Vision Res. 1981;21:1703-1707. https://doi.org/10.1016/0042-6989(81)90062-6
  31. Koriyama Y, Yasuda R, Homma K, Mawatari K, Nagashima M, Sugitani K, Matsukawa T, Kato S. Nitric oxide-cGMP signaling regulates axonal elongation during optic nerve regeneration in the goldfish in vitro and in vivo. J Neurochem. 2009;110:890-901. https://doi.org/10.1111/j.1471-4159.2009.06182.x
  32. Villani L, Guarnieri T. Localization of nitric oxide synthase in the goldfish retina. Brain Res. 1996;743:353-356. https://doi.org/10.1016/S0006-8993(96)01103-1
  33. Liepe BA, Stone C, Koistinaho J, Copenhagen DR. Nitric oxide synthase in Muller cells and neurons of salamander and fish retina. J Neurosci. 1994;14:7641-7654.
  34. Yazulla S, Lin ZS. Differential effects of dopamine depletion on the distribution of [$^3H$]SCH 23390 and [$^3H$]spiperone binding sites in the goldfish retina. Vision Res. 1995;35:2409-2414. https://doi.org/10.1016/0042-6989(95)00010-0
  35. Harsanyi K, Mangel SC. Activation of a D2 receptor increases electrical coupling between retinal horizontal cells by inhibiting dopamine release. Proc Natl Acad Sci USA. 1992;89:9220-9224. https://doi.org/10.1073/pnas.89.19.9220
  36. Van Buskirk R, Dowling JE. Isolated horizontal cells from carp retina demonstrate dopamine-dependent accumulation of cyclic AMP. Proc Natl Acad Sci USA. 1981;78:7825-7829. https://doi.org/10.1073/pnas.78.12.7825
  37. Lasater EM. Retinal horizontal cell gap junctional conductance is modulated by dopamine through a cyclic AMP-dependent protein kinase. Proc Natl Acad Sci USA. 1987;84:7319-7323. https://doi.org/10.1073/pnas.84.20.7319
  38. Huppe-Gourgues F, Coude G, Lachapelle P, Casanova C. Effects of the intravitreal administration of dopaminergic ligands on the b-wave amplitude of the rabbit electroretinogram. Vision Res. 2005;45:137-145. https://doi.org/10.1016/j.visres.2004.08.001
  39. Hedden WL Jr, Dowling JE. The interplexiform cell system. II. Effects of dopamine on goldfish retinal neurones. Proc R Soc Lond B Biol Sci. 1978;201:27-55. https://doi.org/10.1098/rspb.1978.0031
  40. Dowling JE, Ehinger B. Synaptic organization of the dopaminergic neurons in the rabbit retina. J Comp Neurol. 1978;180:203-220. https://doi.org/10.1002/cne.901800202
  41. Dowling JE, Ehinger B. The interplexiform cell system. I. Synapses of the dopaminergic neurons of the goldfish retina. Proc R Soc Lond B Biol Sci. 1978;201:7-26. https://doi.org/10.1098/rspb.1978.0030
  42. Hampton CK, Redburn DA. Autoradiographic analysis of 3H-glutamate, 3H-dopamine, and 3H-GABA accumulation in rabbit retina after kainic acid treatment. J Neurosci Res. 1983;9:239-251. https://doi.org/10.1002/jnr.490090303
  43. Yazulla S, Zucker CL. Synaptic organization of dopaminergic interplexiform cells in the goldfish retina. Vis Neurosci. 1988;1:13-29. https://doi.org/10.1017/S0952523800000997
  44. Djamgoz MB, Wagner HJ. Localization and function of dopamine in the adult vertebrate retina. Neurochem Int. 1992;20:139-191. https://doi.org/10.1016/0197-0186(92)90166-O
  45. Negishi K, Teranishi T, Kato S. The dopamine system of the teleost fish retina. Prog Ret Res. 1990;9:1-48. https://doi.org/10.1016/0278-4327(90)90003-Z
  46. Ribelayga C, Cao Y, Mangel SC. The circadian clock in the retina controls rod-cone coupling. Neuron. 2008;59:790-801. https://doi.org/10.1016/j.neuron.2008.07.017
  47. Shen Y, Zhang AJ, Yang XL. Uncoupling of horizontal cells alters the receptive fields of retinal bipolar cells. Neuroreport. 2003;14:2159-2162. https://doi.org/10.1097/00001756-200312020-00005

피인용 문헌

  1. Effects of dopamine receptor blockade on the intensity-response function of ERG b- and d-waves in dark adapted eyes vol.88, pp.None, 2012, https://doi.org/10.1016/j.visres.2013.06.004
  2. Role of connexin channels in the retinal light response of a diurnal rodent vol.8, pp.None, 2012, https://doi.org/10.3389/fncel.2014.00249
  3. Effects of dopamine receptor blockade on the intensity-response function of electroretinographic b- and d-waves in light-adapted eyes vol.121, pp.3, 2012, https://doi.org/10.1007/s00702-013-1103-0
  4. Role of dopamine in distal retina vol.200, pp.5, 2012, https://doi.org/10.1007/s00359-014-0906-2
  5. Effects of dopamine D 1 receptor blockade on the ERG b- and d-waves during blockade of ionotropic GABA receptors vol.3, pp.None, 2012, https://doi.org/10.1186/s40662-016-0064-4
  6. Dopamine D1 Receptors Contribute Critically to the Apomorphine-Induced Inhibition of Form-Deprivation Myopia in Mice vol.59, pp.6, 2012, https://doi.org/10.1167/iovs.17-22578
  7. Dopamine D2 receptor blockade differentially affects the light-adapted turtle and frog electroretinogram vol.78, pp.4, 2012, https://doi.org/10.21307/ane-2018-032