DOI QR코드

DOI QR Code

Analysis the Effects of Physical Blocking Weirs on the Water Quality in Daechung Reservoir

물리적 차단시설이 대청호 수질에 미치는 효과 분석

  • Lee, Heungsoo (Department of Environmental Engineering, Chungbuk National University) ;
  • Chung, Sewoong (Department of Environmental Engineering, Chungbuk National University) ;
  • Park, Hyungseok (Department of Environmental Engineering, Chungbuk National University) ;
  • Jeong, Donghwan (Geum River Environment Research Center, National Institute of Environmental Research)
  • Received : 2011.10.21
  • Accepted : 2011.12.29
  • Published : 2012.02.29

Abstract

This study was aimed to assess the effects of additional installation of two different types of weirs, one is a curtain-type weir and another is a submerged-type weir, on the control of algal growth in Daechung Reservoir. A two-dimensional(2D) coupled hydrodynamic and eutrophication model that can accommodate vertical movement of the curtain weir following the water surface variations was verified using field data obtained in two distinctive hydrological years; dry(2008) and wet(2010). The model adequately simulated the temporal and spatial variations of water temperature, nutrients and algal(Chl-a) concentrations during the periods. The effectiveness of curtain weir on the control of algal bloom was evaluated by applying the model to 2001(dry year) and 2010 assuming 6 different scenarios according to installation locations. The curtain weirs that already installed at 3, 5, 7 sites(scenario C-2) showed significant effect on the control of algal growth in the reservoir; the reduction rates of algal concentration were placed in the range of 7.5~31.5% and 9.1~44.9% for 2001 and 2010, respectively. However the simulation results revealed that additional installation of curtain weirs(scenario C-3~C-6) in the bay area (choosori) have marginal effect. The effectiveness of submerged weir was evaluated against 2010 assuming 7 different scenarios according to installation locations, but all scenarios(S-1~S-7) showed neglectable or negative effect on the control of algal growth.

Keywords

References

  1. 국가수자원관리종합정보시스템, 2011, http://www.wamis.go.kr/.
  2. 국립환경과학원, 2005, 대청호 수질 및 조류발생 실태조사.
  3. 국립환경과학원, 2007, 대청호 조류상습 발생수역이 본류 수질에 미치는 영향분석(I).
  4. 국립환경연구원, 2003, 금강수계 상수원 수질조사
  5. 나은경, 신경숙, 정제헌, 강호, 2003, 전자선조사를 이용한 부영양화 호수의 조류제어에 관한 연구, 대한환경공학회지, 25(11), 1368-1374.
  6. 이흥수, 정세웅, 정희영, 민병환, 2010, 대청호 수류 차단막 설치 위치에 따른 녹조제어 효과 분석, 한국물환경학회지, 26(2), 231-242.
  7. 정세웅, 박재호, 김유경, 윤성완, 2007, 대청호 부영양화 모의를 위한 CE-QUAL-W2 모델의 적용, 한국물환경학회지, 23(1), 52-63.
  8. 정세웅, 오정국, 2006, 대청호 상류 하천에서 강우시 하천 수온 변동 특성 및 예측 모형 개발, 한국수자원학회지, 39(1), 79-88.
  9. 정세웅, 오정국, 고익환, 2005, CE-QUAL-W2 모형을 이용한 저수지 탁수의 시공간분포 모의, 한국수자원학회논문집, 38(8), 655-664.
  10. 천세억, 이재안, 이재정, 유영복, 방규철, 이열재, 2006,. 대청호 유입유량 변동과 수질 및 조류증식의 관계, 한국물환경학회지, 22(2), 342-348.
  11. 한국수자원공사, 2006, 대청댐 퇴사량측정보고서.
  12. 한국수자원공사, 2007, 댐운영 실무편람.
  13. Asaeda, T., H. S. Pham, D. G. Priyantha, J. Manatunge, and G. C. Hocking, 2001, Control of algal blooms in reservoirs with a curtain: a numerical analysis, Ecological Engineering, 14, 395-404.
  14. Asaeda, T., D. G. Priyantha, S. Saitoh, and K. Gotoh, 1996, A new technique for controlling algal blooms in the withdrawal zone of reservoirs using vertical curtains, Ecological Engineering, 7, 95-104. https://doi.org/10.1016/0925-8574(96)00002-X
  15. Chung, S. W. and R. Gu, 1998, Two-dimensional simulations of contaminant currents in stratified reservoir, J. Hydr. Eng., 124(7), 704-711. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:7(704)
  16. Cole T. M. and E. M. Buchak, 1995, CE-QUAL- W2: A Two-dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model, User's Manual, U.S. Army Engineers Waterways Experiment Station, Vicksburg, MS.
  17. Cole, T. M. and S. A. Wells, 2004, CE-QUAL-W2: A Two Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model. Version 3.2 User Manual, U.S. Army Corps of Engineers.
  18. Cole, T. M. and D. H. Tillman, 1999, Water Quality Modeling of Lake Monroe Using CE-QUAL-W2, Miscellaneous Paper EL-99-1.
  19. Cole, T. M. and D. H. Tillman, 2001, Water Quality Modeling of Allatoona and West Point Reservoirs Using CE-QUAL-W2, U.S. Army Corps of Engineers.
  20. Ganf, G. G. and R. L. Oliver, 1982, Vertical separation of light and available nutrients as a factor replacement of green algae by blue-green algae in the plankton of a stratified lake, J. Ecol., 70, 829-844. https://doi.org/10.2307/2260107
  21. McQueen, D. J. and D. R. S. Lean, 1987, Influence of water temperature and nitrogen to phosphorus rations on the dominance of blue-green algae in Lake St. George, Ontario, Can. J. Fish. Aquat. Sci., 46, 1171-1175.
  22. Morillo, S., J. Imberger, and J. Antenucci, 2006, Modifying the residence time and dilution capacity of a reservoir by altering internal flow-paths, J. River Basin Management, 4(4), 255-271. https://doi.org/10.1080/15715124.2006.9635295
  23. Priyantha, D. G., T. Asaeda, S. Saitoh, and K. Gotoh, 1997, Modelling effects of curtain method on algal blooming in reservoirs, Ecological Modeling, 98, 89-104. https://doi.org/10.1016/S0304-3800(96)01906-0
  24. Tilman, D., R. Kiesling, R. Sterner, S. S. Kilham, and F. A. Johnson, 1986, Green, blue-green and diatom algae: Taxonomic differences in competitive ability for phosphorus, silicon and nitrogen, Arch. Hydrobiol., 106, 473-485.
  25. Vermeyen, T. B. (2000). Application of Flexible Curtains to Control Mixing and. Enable Selective Withdrawal in Reservoirs, U.S. Bureau of Reclamation, D-8560, Denver, CO 80225, 457-462.
  26. Vermeyen, T. B. and H. Knoblauch, 2000, Hydraulic Characteristics of a Plunge Zone in Whiskeytown Reservoir, California, U.S. Bureau of Reclamation, D-8560, Denver, CO 80225, 469-474.
  27. Walsby, A. E., C. S. Reynolds, R. L. Oliver, and J. Kromkamp, 1989, The role of gas vacuoles and carbohydrate content in the buoyancy and vertical distribution of Anabaena minutissima in Lake Rotongaio, New Zealand, Arch. Hydrobiol. Beih. Ergebn. Limnol., 32, 1-25.