DOI QR코드

DOI QR Code

Environmental Impact Assessments along with Construction of Residential and Commercial Complex

주거단지 건설이 하천에 미치는 생태영향평가

  • Received : 2012.04.07
  • Accepted : 2012.06.09
  • Published : 2012.10.31

Abstract

The integrative ecological approaches of chemical assessments, physical habitat modelling, and multi-metric biological health modelling were applied to Gwanpyeong Stream within Gap-Stream watersheds to evaluate environmental impacts on the constructions of residential and commercial complex. For the analysis, the surveys conducted from 45 sites of reference streams within the Gap-Stream watershed and 3 regular sites during 2009 - 2010. Physical habitat health, based on the habitat model of Qualitative Habitat Evaluation Index(QHEI) declined from the headwaters(good - fair condition) to the downstream(poor condition). Chemical water quality, based turbidity and electric conductivity(EC), was degraded toward to the downstream, and especially showed abrupt increases, compared to the values of control streams(CS). Also, concentrations of chlorophyll-a in the downstreams were greater compared to the control stream(CS), indicating an eutrophication. Biological health conditions, based on the Index of Biological Integrity(IBI) using fish assemblages, averaged 19.3 which is judged as a fair condition by the biological criteria of the Ministry of Environment, Korea. The comparisons of model metric values in sensitive species and riffle-benthic species on the Maximum Species Richness Line(MSRL) of 45 reference streams indicated a massive disturbances in all sampling locations. Also, tolerance guild and trophic guild analyses suggest that dominances of tolerant species and omnivores were evident, indicating a biological degradation by habitat disturbances and organic matter pollutions. There was no distinct longitudinal variations of IBI model values from the headwater to the downstream in spite of slight chemical and habitat health gradients among the sampling sites. Overall, integrative ecological health(IEH) scores, based on the chemical, physical, and biological parameters, were low compared to the 45 reference streams due to physical and chemical disturbances of massive constructions of the residential and commercial complex. This stream, thus showed a tendency of typical urban streams which are disturbed in the chemical water quality, habitat structures, and biological integrity. Effective stream management plans and restoration strategies are required in this urban stream for improving integrative stream health.

Keywords

References

  1. 공동수, 2002, 생물학적 수질기준 설정 필요성 및 접근방안, 한국환경생물학회지, 20, 38-49.
  2. 권영수, 안광국, 2006, 금호강 수계에서 생물학적 하천 건강도 및 이화학적 특성, 한국육수학회지, 39(2), 145-156.
  3. 김병만, 이충렬, 1998, 만경강 수계에 서식하는 어류군집에 관한 연구, 한국육수학회지, 31(3), 191-203.
  4. 김익수, 박종영, 2002, 한국의 민물고기, 교학사, 서울.
  5. 김종선, 함순아, 나철호, 1995, 수서곤충을 이용한 탐진강 수계의 수질평가, 한국환경생물학회지, 13(2), 225-230.
  6. 김준태, 박유라, 조현실, 부성민, 1996, 금강 수계에서 식물플랑크톤의 군집 구조, 한국육수학회지, 29(3), 187-195.
  7. 김현맥, 이재훈, 안광국, 2008, 도심하천 생태계에서의 수질 및 생태 건강성 평가, 한국환경생물학회지, 26(4), 311-322.
  8. 김현정, 이상재, 안광국, 2010, 창원천.남천에서 생태복원 전.후의 생태건강도 비교평가, 43(2), 307-318.
  9. 남명모, 1996, 한국산 담수어류의 현황, 한국육수학회 심포지움, 31-45.
  10. 배대열, 김유표, 안광국, 2008, 다변수 메트릭 모델을 이용한 식장산 계곡천의 생태 건강성 평가, 한국물환경학회지, 24(2), 156-163.
  11. 배대열, 안광국, 2006, 생물학적 다변수 모델 적용 및 수화학 분석에 의거한 갑천생태계 평가, 한국육수학회지, 39(2), 198-208.
  12. 변화근, 최재석, 최준길, 1996, 양양남대천의 어류상과 소하성 어류의 분포 특성, 한국육수학회지, 29(3), 159-166.
  13. 성치남, 백근식, 최지혁, 조현욱, 김종홍, 1997, 주암호 지천의 수질과 어류군집, 한국육수학회지, 30(2), 107-118.
  14. 손영목, 송호복, 2006, 금강의 민물고기, 지성사, 서울.
  15. 신재기, 조주래, 황순진, 조경제, 2000, 경안천-팔당호의 부영양화와 수질오염 특성, 한국육수학회지, 33(4), 387-394.
  16. 안광국, 김자현, 2005, 물리적 서식지평가기법 및 어류 다변수 평가모델에 의거한 대전천의 생태학적 건강도 진단, 한국육수학회지, 38(3), 361-371.
  17. 안광국, 염동혁, 이성규, 2001a, 생물보전지수(Index of Biological Integrity)의 신속한 생물평가 기법을 이용한 갑천수계의 평가, 한국환경생물학회지, 19(4), 261-269.
  18. 안광국, 정승현, 최신석, 2001b, 생물보전지수(Index of Biological Integrity) 및 서식지평가지수(Qualitative Habitat Evaluation Index)를 이용한 평창강의 수환경 평가, 한국육수학회지, 34(3), 153-162.
  19. 안광국, 이재연, 배대열, 김자현, 황순진, 원두희, 이재관, 김창수, 2006, 우리나라 주요하천 수계에서 다변수모델을 이용한 생태학적 수환경 평가, 한국물환경학회지, 22(5), 796-804.
  20. 안광국, 이재연, 장하나, 2005, 유등천에서의 생태학적 건강성 평가 및 수질양상, 한국육수학회지, 38(3), 341-351.
  21. 양홍준, 채병수, 1994, 대도시 주변 하천수계의 수질환경과 육수생물학적 연구-금호강수계의 어류상과 어류군집구조, 한국육수학회지, 27(2), 177-188.
  22. 염동혁, 안광국, 홍영표, 이성규, 2000, 어류군집을 이용한 금호강의 생물보전지수(Index of Biological Integrity, IBI) 평가, 한국환경생물학회지, 18(2), 215-226.
  23. 이재훈, 홍영표, 안광국, 2007, 남한강 상류 수계에서 어류의 다변수 평가 모델 지수 산정 및 군집지수와의 비교평가, 한국육수학회지, 40(2), 327-336.
  24. 이재훈, 안광국, 2010, 생태 건강성 평가로서 분자지표에서 군집지표 수준까지의 다양한 변수 분석, 한국하천호수학회지, 43(1), 24-34.
  25. 전상린, 1980, 한국산 담수어의 분포에 관하여, 중앙대박사학위논문, 서울.
  26. 최준길, 변화근, 석형근, 2000, 원주천의 어류군집동태, 한국육수학회지, 33(3), 274-281.
  27. 허우명, 김범철, 황길순, 최광순, 박원규, 1995, 낙동강 수계의 인, 질소 및 Chl-a 농도 분포, 한국육수학회지, 28(2), 175-181.
  28. 홍영표, 2004, 멸종위기종 미호종개의 현황 및 보존, 2004년 한국어류학회 추계학술발표대회 심포지움 발표요약집, 59-75.
  29. 환경부, 1987, 자연생태계 전국조사 1987 제 2차년도(I): 담수어류/수서곤충, 450p.
  30. 환경부, 2007, 수생태 건강성 회복을 위한 하천복원 모델과 기준, 조사계획 수립 연구 최종보고서 (III), 수생태 건강성 조사계획 수립 및 지침, 인천.
  31. 환경부/국립환경연구원, 2004, 물환경종합평가방법 개발 조사연구(I), 최종보고서, 인천.
  32. 환경부/국립환경과학원, 2005, 물환경종합평가방법 개발 조사연구(II), 최종보고서, 인천.
  33. 환경부/국립환경과학원, 2006, 물환경종합평가방법 개발 조사연구(III), 최종보고서, 인천.
  34. Allan, J.D., 1995, Stream ecology, structure and function of running waters, 1st edition, Chapman & Hall, 388p.
  35. An, K.G. and S.S. Park, 2002, Indirect influence of the summer monsoon on chlorophyll-total phosphorus models in reservoirs: A case study, Ecological Modeling, 152, 191-203. https://doi.org/10.1016/S0304-3800(02)00020-0
  36. An, K.G., 2003, Spatial and temporal variabilities of nutrient limitation based on in situ experiments of nutrient enrichment bioassay, Journal of Environmental Science and Health Part A, 38, 687-882.
  37. Barbour, M.T., J. Gerritsen, B.D. Snyder and J.B. Stribling, 1999, Rapid bioassessment protocols for use in streams and wadeable rivers: Periphyton, benthic macroinvertebrates, and fish, second edition, EPA 841-B-99-002, U.S. Environmental Protection Agency, Office of Water, Washington DC.
  38. Hamilton, K. and E.P. Bergersen, 1984, Methods to estimate aquatic habitat variables, Environmental evaluation project N. DPTS-35-9, pp. 1-30, Bureau of Reclamation, Denver Federal Center, Denver, CO, USA.
  39. Hugueny, B., S. Camara, B. Samoura and M. Magassouba, 1996, Applying an index of biotic integrity based on communities in a west african river, Hydrobiologia, 331, 71-78. https://doi.org/10.1007/BF00025409
  40. Judy, R.D., P.N.Jr. Seeley, T.M. Murray, S.C. Svirsky, M.R. Whitworth and L.S. Ischinger, 1984, National fisheries survey, Vol. 1, Technical report: initial findings, United States Fish and Wildlife Service, FWS/OBS-84/06. USA.
  41. Karr, J.R., 1981, Assessment of biotic integrity using fish communites, Fishieries, 6, 21-27. https://doi.org/10.1577/1548-8446(1981)006<0021:AOBIUF>2.0.CO;2
  42. Karr, J.R., K.D. Fausch, P.L. Angermeier, P.R. Yant and I.J. Schlosser, 1986, Assessing biological integrity in running water: A method and its rationale, pp. 28, Illinois National History Survey, Special Publication 5, Champaign, IL.
  43. Lee, E.H., 2009, Stream ecosystem health assessments based on physical, chemical, biological parameters in Geum-River watershed, MSc. Thesis, Chungnam National Univeristy, Daejeon
  44. Lee, J.H. and K.G. An, 2007, Seasonal dynamics of fish fauna and compositions in the Gap Stream along with conventional water quality, Korean Journal of Limnology, 40(4), 503-510.
  45. Margalef, R., 1958, Information theory in ecology, Generation System, 3, 36-71.
  46. Oberdorff, T. and R.M. Hughes, 1992, Modification of an index of biotic integrity based on fish assemblages to characterize rivers of the Seine Basin, France, Hydrobiologia, 228, 117-130. https://doi.org/10.1007/BF00006200
  47. Pielou, E.C., 1975, Ecological diversity, Wiley, New York, 165pp.
  48. Plafkin, J.L., M.T. Barbour, K.D. Porter, S.K. Gross and R.M. Hughes, 1989, Rapid assessment protocols for use in streams and rivers: benthic macroinvertebrats and fish, EPA-444/4-89-001, Office of Water Regulations and Standards, US EPA, Washington DC, USA.
  49. Ra, J.S., S.D. Kim, N.I. Chang and K.G. An, 2007, Ecological health assessments based on whole effluent toxicity tests and the index of biological integrity in temperate streams influenced by wastewater treatment plant effluents, Journal of Environmental Toxicology and Chemistry, 26, 2010-2018. https://doi.org/10.1897/06-542R.1
  50. Rankin, E.T. and C.O. Yoder, 1999, Methods for deriving maximum species richness lines and other threshold relationships in biological field data, in Simon, T.P. (ed.), Assessing the sustainability and biological integrity of water resources using fish communities, CRC Press, USA, pp. 611-621.
  51. Rutherford, D.A., A.A. Echlle and O.E. Maughan, 1987, Changes in the fauna of the little river drainage, south eastern Oklahoma, 1948-1955 to 1981-1982: Test of the Hypothesis of environmental degradation, Community and evolutionary ecology of north American stream fishes, University of Oklahoma, 178-183.
  52. Shannon, C.E. and W. Weaver, 1949, The mathematical theory of communication, University of Illinois Press, Urbana.
  53. Simpson, E.H., 1949, Measurement of diversity, Nature, 163, 688. https://doi.org/10.1038/163688a0
  54. Strahler, A.N., 1957, Quantitative analysis of watershed geometry, American Geophysical Union Transactions, 38, 913-920. https://doi.org/10.1029/TR038i006p00913
  55. US EPA, 1991, Technical support document for water quality-based toxic control, EPA 505-2-90-001, US EPA, Office of Water, Washington DC, USA.
  56. US EPA, 1993, Fish field and laboratory methods for evaluation the biological integrity of surface waters, EPA 600-R-92-111, Environmental Monitoring Systems Laboratory-Cincinnati, office of Modeling, Monitoring systems and quality assurance, Office of Research Development, US EPA, Cincinnati, Ohio, 45268.