DOI QR코드

DOI QR Code

증촌 도랑의 생태환경 조사와 평가

Preliminary Ecological Environmental Assessments of a Brooklet in Jeungchon

  • 한정호 (충남대학교 생명시스템과학대학 생명과학과) ;
  • 안광국 (충남대학교 생명시스템과학대학 생명과학과)
  • Han, Jeong-Ho (Department of Biological Sciences, College of Biosciences and Biotechnology, Chungnam National University) ;
  • An, Kwang-Guk (Department of Biological Sciences, College of Biosciences and Biotechnology, Chungnam National University)
  • 투고 : 2012.08.28
  • 심사 : 2012.10.15
  • 발행 : 2012.12.31

초록

Preliminary ecological environmental assessments including physico-chemical constituents, water quality, fish fauna analysis, physical habitat health, and ecological health assessment were conducted as a primary step for Jeungchon micro-habitat ecosystem restoration in 2012. Water chemistry analysis of conductivity, dissolved oxygen, chlorophyll-a and etc. indicated that there were no significant differences(p < 0.05) among 6 sites between the headwaters and downstream. Multi-metric model analysis of Qualitative Habitat Evaluation Index(QHEI) showed that brooklets were at "good condition" as a mean QHEI of 158.7(n = 6) and the longitudinal differences of the model values between the sites were minor(QHEI range: 153 - 165). Total fish species and the number of individuals were 12 and 481, respectively, and dominant species were Zacco platypus(49.5%) and Zacco koreanus(36.8%). Tolerance guild analysis showed that the proportion of sensitive species($S_S$) had a negative linear function[$S_S=86.35-0.31(D_H)$; $R^2$ = 0.892, p < 0.01] with a distance from the headwaters, while the proportion of tolerant species($T_S$) had a positive linear function($R^2$ = 0.950, F = 90.28, p < 0.001) with the distance. Trophic feeding guild analysis showed that the proportion of insectivore species($I_n$) had a negative linear function($R^2$ = 0.934, p < 0.01) with a distance from the headwaters, while the proportion of omnivore species($O_m$) had a positive linear function($R^2$ = 0.958, p < 0.001) with the distance. Index of Biological Integrity(IBI) model, based on fish assemblages, showed a "fair condition" as a mean IBI of 23(n = 6), and there was a distinct differences of ecological health between the headwaters(S1 = 30; "good condition") and the downstreams(S6 = 14; "poor condition"). Overall, the preliminary environmental impact assessments suggest that water quality, physical habitat conditions(QHEI model), and ecological health(IBI model) were maintained well, even if the state was not an excellent conditions.

키워드

참고문헌

  1. 경남발전연구원, 2011, 경상남도 도랑살리기 현황과 과제, 1-18.
  2. 교육부, 1997, 한국동식물도감, 제37권 동물편(담수어류), 교육부, 133-520.
  3. 국립환경과학원, 2007, 수생태 건강성 회복을 위한 하천복원 모델과 기준, 조사계획 수립 연구 최종보고서(III): 수생태 건강성 조사계획 수립 및 지침, 국립환경과학원, 37-46.
  4. 김익수, 강종언, 1993, 원색 한국 어류도감, 아카데미서적, 1-478.
  5. 김익수, 박종영, 2002, 한국의 민물고기, 교학사, 1-465.
  6. 문운기, 안광국, 2007, 1차 소하천의 환경특성 및 어류군집, 한국육수학회지, 40(1), 163-172.
  7. 배대열, 김유표, 안광국, 2008, 다변수 메트릭 모델을 이용한 식장산 계곡천의 생태 건강성 평가, 한국물환경학회지, 24(2), 156-163.
  8. 손영목, 송호복, 2006, 금강의 민물고기, 지성사, 1-239.
  9. 안광국, 김자현, 2005, 물리적 서식지평가기법 및 어류 다변수 평가모델에 의거한 대전천의 생태학적 건강도 진단, 한국육수학회지, 38(3), 361-371.
  10. 안광국, 이재연, 배대열, 김자현, 황순진, 원두희, 이재관, 김창수, 2006, 우리나라 주요하천 수계에서 다변수모델을 이용한 생태학적 수환경 평가, 한국물환경학회지, 22(5), 796-804.
  11. 양인태, 최영재, 2001, GIS를 이용한 소하천 관리 시스템 개발, 대한토목학회지, 21(1-D), 105-114.
  12. 이상훈, 조욱상, 2001, 소하천의 오염부하량이 수질에 미치는 영향에 관한 연구, 한국환경영향평가학회지, 10(1), 9-19.
  13. 전상린, 1980, 한국산 담수어의 분포에 관하여, 중앙대학교 박사학위 논문, 1-91.
  14. 정문기, 1977, 한국어도보, 일지사, 서울, 1-727.
  15. 최기철, 1989, 한국의 민물고기, 서문당, 서울, 1-50.
  16. 최기철, 전상린, 김익수, 손영목, 1990, 원색 한국 담수어 도감, 향문사, 서울, 1-277.
  17. 최명재, 박혜경, 이장호, 윤석환, 2009, 어류 모델 메트릭과 물리적 서식지 변수를 이용한 팔당호 유입하천 하류부의 하천건강성 평가, 한국육수학회지, 42(3), 280-289.
  18. 한국농어촌공사, 2006, 농촌지역 소하천의 건천화 원인분석을 위한 실태 조사, 농어촌 연구원, 45-65.
  19. 한국환경정책평가연구원, 2008, 수생태계 보호를 위한 소하천 관리방안, 1-25.
  20. 환경부, 2008, 2008년도 전국 도랑 살리기 실태조사 결과, 환경부 수생태보전과, 1-6.
  21. 환경부, 2010a, 생태하천 복원사업 중장기 추진계획, 환경부 수생태보전과, 1-27.
  22. 환경부, 2010b, 샛강, 실개천을 살리기 위한 1사 1하천 운동 협약식 계획, 환경부 수생태보전과, 1-27.
  23. 환경부, 2011, 우리마을 도랑살리기 범 국민운동 추진계획, 낙동강유역환경청, 6-11.
  24. Alexander, R.B., E.W. Boyer, R.A. Smith, G.E. Schwarz, and R.B. Moore, 2007, The role of headwater streams in downstream water quality, Journal of The American Water Resources Association, 43(1), 41-59. https://doi.org/10.1111/j.1752-1688.2007.00005.x
  25. Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling, 1999, Rapid bioassessment protocols for use in streams and wadeable rivers: Periphyton, benthic macroinvertebrates and fish, second edition, EPA-841-B-99-002, pp. 162-180, US. Environmental Protection Agency, Office of Water, Washington, D.C.
  26. Haigh, M.J., L. Jansky, and J. Hellin, 2004, Headwater deforestation: a challenge for environmental management, Global Environmental Change, 14, 51-61. https://doi.org/10.1016/j.gloenvcha.2003.11.004
  27. Harding, J.S., D.A. Norton, and A.R. McIntosh, 2007, Persistence of a significant population of rare Canterbury mudfish (Neochanna burrowsius) in a hydrologically isolated catchment, New zealand Journal of Marine and Freshwater Research, 41, 309-316. https://doi.org/10.1080/00288330709509918
  28. Harding, J.S., R.G. Young, J.W. Hayes, K.A. Shearer, and J.D. Stark, 1999, Changes in agricultural intensity and river health along a river continuum, Freshwater Biology, 42(2), 345-357. https://doi.org/10.1046/j.1365-2427.1999.444470.x
  29. Harris, J.H., 1995, The use of fish in ecological assessments, Australian Journal of Ecology, 20, 65-80. https://doi.org/10.1111/j.1442-9993.1995.tb00523.x
  30. Johnson, B.R., K.M. Fritz, K.A. Blocksom, and D.M. Walters, 2008, Larval salamanders and channel geomorphology are indicators of hydrologic permanence in forested headwater streams, Ecological Indicator, 9(1), 150-159.
  31. Karr, J.R., 1981, Assessment of biotic integrity using fish communities. Fisheries, 6, 21-27. https://doi.org/10.1577/1548-8446(1981)006<0021:AOBIUF>2.0.CO;2
  32. Karr, J.R., K.D. Fausch, P.L. Angermeier, P.R. Yant, and I.J. Schlosser, 1986, Assessing biological integrity in running water: A method and its rationale, p. 28, Illinois National History Survey, Special Publication 5, Champain, IL.
  33. Kusuda, S., and K. Noboru, 2009, Upstreammigrating loach in the fishway for a rice paddy, Fish Water, 45, 19-22.
  34. Margalef, R., 1958, Information theory in ecology, Generation System, 3, 36-71.
  35. Muotka, T., and P. Laasonen, 2002, Ecosystem recovery in restored headwater streams: he role of enhanced leaf retention, Journal of Applied Ecology, 39(1), 145-156. https://doi.org/10.1046/j.1365-2664.2002.00698.x
  36. Pielou, E.C., 1975, Ecological diversity, Wiley, New York, 165.
  37. Plafkin, J.L., M.T. Barbour, K.D. Porter, S.K. Gross and R.M. Hughes, 1989, Rapid assessment protocols for use in streams and rivers: benthic macroinvertebrats and fish, EPA-444/4-89-001, Office of Water Regulations and Standards, US EPA, Washington DC, USA.
  38. Pozo, J., E. Gonzalez, J.R. Diez, J. Molinero, and A. Elosegui, 1997, Inputs of particulate organic matter to streams with different riparian vegetation, Journal of the North American Benthological Society, 16(3), 602-611. https://doi.org/10.2307/1468147
  39. Sanders, R.E., R.j. Milter, C.O. Yondr, and E.T. Rankin, 1999, The Use of external deformities, erosion, lesions, and tumors in fish assemblages for characterizing aquatic resources, Simon, T.P.(Eds), CRC Press., 225-245.
  40. Shannon, C.E., and W. Weaver, 1949, The mathematical theory of communication, University of Illinois Press, Urbana.
  41. Simpson, E.H., 1949, Measurement of diversity, Nature, 163, 688. https://doi.org/10.1038/163688a0
  42. US. EPA, 1991, Technical support document for water quality-based toxic control, pp. 29-45, EPA 505-2-90-001, US. EPA, Office of Water, Washington D.C. USA.
  43. US. EPA, 1993, Fish field and laboratory methods for evaluating the biological integrity of surface waters, pp. 128-198, EPA-600-R-92-111, Environmental monitoring systems laboratory-Cincinnati office of modeling, monitoring systems, and quality assurance, Office of Research Development, USA.
  44. Wipfli, M.S., J.S. Richardson, and R.B. Naiman, 2007, Ecological linkages between headwaters and downstream ecosystems: transport of organic matter, invertebrates, and wood down headwater channels, Journal of the American Water Resources Association, 43(1), 72-85. https://doi.org/10.1111/j.1752-1688.2007.00007.x