Effects of Mahangeuigam-Tang on Obesity-related Factors in Brain and Gastrointestinal Tract of Mice

마행의감탕(麻杏薏甘湯)이 생쥐의 뇌와 위장관에서 비만관련 인자에 미치는 영향

  • Kim, Tae-Heon (Department of Anatomy, College of Oriental Medicine, Woosuk University) ;
  • Lee, Chang-Hyun (Department of Anatomy, College of Oriental Medicine, Woosuk University)
  • 김태헌 (우석대학교 한의과대학 해부학교실) ;
  • 이창현 (우석대학교 한의과대학 해부학교실)
  • Received : 2012.02.15
  • Accepted : 2012.04.09
  • Published : 2012.04.25

Abstract

To determine the effects of Mahaengeuigam-tang(MHEGT) on obesity, the obesity-related factors (gastrin, CGRP, ghrelin, glucagon-like peptide-1, insulin, orexin, leptin, serotonin, NPY) were investigated in the stomach, pancreas, brain of mice by immunohistochemical methods for 4 weeks after Mahaengeuigam-tang(MHEGT) administration. The change of boy weight decreased in MHEGT administered group than that of control group. The immunohistochemical density of the gastrin and CGRP positive cells on pylorus of stomach increased in MHEGT administered group than that of control group. The number of ghrelin immunoreactive cells on stomach decreased in MHEGT administered groups than that of control group. The immunohistochemical density of GLP-1 in the pancreas decreased in MHEGT administered group than that of control group. The immunohistochemical density of insulin positive cells in the pancreas decreased in MHEGT administered group than that of control group. The immunohistochemical density of orexin and NPY positive neurons in the diencephalon was slightly stronger in MHEGT administered group than that of control group. The immunohistochemical density of serotonin and leptin positive neurons was stronger in MHEGT administered group than that of control group. These results demonstrate that Mahaengeuigam-tang(MHEGT) increased the immunohistochemical density of factors related to appetite inhibitors, and decreased the immunohistochemical density of factors related to stimulator of food intake in stomach, pancreas and brain.

Keywords

References

  1. WHO, Obesity, 2008.
  2. Field, A.E., Coakley, E.H., Must, A., Spadano, J.L., Laird, N., Dietz, W.H., Rimm, E., Colditz, G.A. Impact of overweight on the risk of developing common chronic diseases during a 10-year period. Arch Intern Med 161: 1581-1586, 2001. https://doi.org/10.1001/archinte.161.13.1581
  3. Must, A., Spadano, J., Coakley, E.H., Field, A.E., Colditz, G., Dietz, W.H. The disease burden associated with overweight and obesity. JAMA 282: 1523-1529, 1999. https://doi.org/10.1001/jama.282.16.1523
  4. Polesel, J., Zucchetto, A., Montella, M., Dal Maso, L., Crispo, A., La Vecchia, C., Serraino, D., Franceschi, S., Talamini, R. The impact of obesity and diabetes mellitus on the risk of hepatocellular carcinoma. Ann Oncol 20: 353-357, 2009.
  5. Hu, G., Jousilahti, P., Nissinen, A., Antikainen, R., Kivipelto, M., Tuomilehto, J. Body mass index and the risk of Parkinson disease. Neurology 67: 1955-1959, 2006. https://doi.org/10.1212/01.wnl.0000247052.18422.e5
  6. Whitmer, R.A., Gunderson, E..P, Quesenberry, C.P. Jr., Zhou, J., Yaffe, K. Body mass index in midlife and risk of Alzheimer disease and vascular dementia. Curr Alzheimer Res 4: 103-109, 2007. https://doi.org/10.2174/156720507780362047
  7. 대한비만학회, 임상비만학. 서울: 고려의학. pp 19, 20, 191-200, 221-226, 303-311, 417-425, 2001.
  8. Druce, M., Bloom, S.R. The regulation of appetite. Arch Dis Child 91: 183-187, 2006.
  9. Yanovski, S.Z., Yanovski, J.A. Obesity. N Engl J Med 346: 591-602, 2002. https://doi.org/10.1056/NEJMra012586
  10. 김철희. 비만의 약물치료. 임상당뇨병 9: 173-177, 2008.
  11. 이재성, 이성현. 한방치료의 체지방 및 복부비만 감소효과. 대한한방비만학회지 1: 33-42, 2001.
  12. 홍원식. 교합편찬. 정교황제내경. 서울, 동양의학연구원 출판부, p 61, 1974.
  13. 趙金譯주편. 중의증상감별진단학. 북경, 인민위생출판사, p 43, 1987.
  14. 虞天民. 醫學正傳, 서울, 성보사, p 75, 1986.
  15. 李梃. 편주 醫學入門, 서울, 대성문화사, 외집 1권, p 323, 권2, p 108, 1974.
  16. 張仲景. 金匱要略方論, 서울, 성보사 p 21, 35, 70, 1985.
  17. 中醫硏究員주편. 中醫症狀鑑別診斷學, 북경, 인민위생출판사, p 43, 1987.
  18. 유은주, 서병관, 남상수, 강성길. 고지방식이로 유도된 비만 생쥐에서 창출약침의 항비만효과. 대한침구학회지 27: 31-42, 2010.
  19. 김진혁, 신민섭, 최석우, 송범용, 육태한. 마황천호약침이 비만에 미치는 영향. 대한침구학회지 26: 77-83, 2009.
  20. 정지윤, 김종인, 이상훈, 강성길. 전침이 복부비만 성인의 비만관련 지표에 미치는 영향 - 무작위배정 단일 맹검 예비연구. 대한침구학회지 27: 43-57, 2010.
  21. 윤태숙, 성윤영, 장자영, 양원경, 지윤의, 김호경. 목향 추출물의 항비만 활성 효과. 한국약용작물학회지 18: 151-156, 2010.
  22. 기성식, 이영종. 방기황기탕 및 방기복령탕이 고지혈증 흰쥐에 미치는 영향. 대한본초학회지 20: 149-157, 2005.
  23. 양동혁, 김재현, 정종길, 정현우, 최찬헌. 태음조위탕과 태음조위배마황탕이 비만 흰쥐에 미치는 영향. 대한본초학회지 25: 103-109, 2010.
  24. 노의준, 강한은. 古方類聚, 서울, 도서출판 고방, p 306, 833, 2009.
  25. Hsu, S.M., Raine, L., Fanger, H. Use of avidin-biotin-peroxidase complex(ABC) in immunoperoxidase techniques: A comparison between ABC and unlabeled antibody(PAP) procedures. J Histochem Cytochem 29: 577-580, 1981. https://doi.org/10.1177/29.4.6166661
  26. 대한비만학회. 임상비만학, 서울, 고려의학, pp 184-189, 1995.
  27. 彭怀仁. 中華醫方精選辭典, 上海, 上海科學技術文獻出版社出 版局, p 600, 1998.
  28. 謝鳴. 中醫方劑現代硏究, 北京, 學苑出版社, pp 44, 1440-1442, 1997.
  29. 황미자, 신현대, 송미연. 2000년 이후 비만치료에 사용되는 처방 및 본초에 대한 문헌연구-마황을 중심으로. 대한한방비만학회지 7: 39-54, 2007.
  30. 전국한의과대학본초학교수공편. 본초학, 서울, 영림사, pp 306-308, 1998.
  31. 강자돈. 마황, 마황합녹차 약침이 고지혈증 유발백서에 미치는 영향. 동신대학교 석사학위논문. 2003.
  32. 조은정, 류병호, 송병권, 이태호, 서판길, 류성호, 김희숙. 마황으로부터 췌장 cholesterol esterase 저해물질 분리 및 규명. 한국식품영양과학회지 28: 816-821, 1999.
  33. Buemann, B., Marckmann, P., Christensen, N.J., Astrup, A. The effect of ephedrine plus caffeine on plasma lipids and lipoproteins during a 2MJ/day diet. International J Obesity 18: 329-332, 1994.
  34. 전국한의과대학본초학교수공편. 본초학, 서울, 영림사, pp 121-123, 1991.
  35. 김종욱, 최용휴, 주영승, 박선민, 이미영, 김호경, 김홍준, 고병섭. 의이인이 3T3-L1 adipocyte에서 인슐린성 작용과 인슐린 민감성에 미치는 영향. 대한한의학회지 23: 83-91, 2002.
  36. Näslund, E., Hellström, Per M. Appetite signaling: From gut peptides and enteric nerves to brain. Physiology & Behavior 92: 256-262, 2007. https://doi.org/10.1016/j.physbeh.2007.05.017
  37. Lavine, J.A., Attie, A.D. Gastrointestinal hormones and the regulation of ${\beta}$-cell mass. Ann N Y Acad Sci 1212: 41-58, 2010. https://doi.org/10.1111/j.1749-6632.2010.05802.x
  38. Dockray, G., Dimaline, R., Varro, A. Gastrin: old hormone, new functions. Pflugers Arch 449: 344-355, 2005. https://doi.org/10.1007/s00424-004-1347-5
  39. Rehfeld, J.F. Incretin physiology beyond glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide: cholecystokinin and gastrin peptides. Acta Physiol (Oxf). 201: 405-411, 2011. https://doi.org/10.1111/j.1748-1716.2010.02235.x
  40. Evangelista, S. Role of calcitonin gene-related Peptide in gastric mucosal defence and healing. Curr Pharm Des 15: 3571-3576, 2009. https://doi.org/10.2174/138161209789207024
  41. Zelissen, P.M., Koppeschaar, H.P., Lips, C.J., Hackeng, W.H. Calcitonin gene-related peptide in human obesity. Peptides 12: 861-863, 1991. https://doi.org/10.1016/0196-9781(91)90147-H
  42. Kojima, M., Hosoda, H., Date, Y., Nakazato, M., Matsuo, H., Kangawa, K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402: 656-660, 1999. https://doi.org/10.1038/45230
  43. Guan, X.M. Yu, H., Palyha, O.C., McKee, K.K., Feighner, S.D., Sirinathsinghji, D.J., Smith, R.G., Van der Ploeg, L.H., Howard, A.D. Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Brain Res Mol Brain Res 48: 23-29, 1997. https://doi.org/10.1016/S0169-328X(97)00071-5
  44. Katayama, M., Nogami, H., Nishiyama, J., Kawase, T., Kawamura, K. Developmentally and regionally regulated expression of growth hormone secretagogue receptor mRNA in rat brain and pituitary gland. Neuroendocrinology 72: 333-340, 2000. https://doi.org/10.1159/000054602
  45. Wren, A.M., Small, C.J., Abbott, C.R., Dhillo, W.S., Seal, L.J., Cohen, M.A., Batterham, R.L., Taheri, S., Stanley, S.A., Ghatei, M.A., Bloom, S.R. Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab 86: 5992, 2001. https://doi.org/10.1210/jc.86.12.5992
  46. Nakazato, M., Murakami, N., Date, Y., Kojima, M., Matsuo, H., Kangawa, K., Matsukura, S. A role for ghrelin in the central regulation of feeding. Nature 409: 194-198, 2001. https://doi.org/10.1038/35051587
  47. Hewson, A.K., Tung, L.Y., Connell, D.W., Tookman, L., Dickson, S.L. The rat arcuate nucleus integrates peripheral signals provided by leptin, insulin, and a ghrelin mimetic. Diabetes 51: 3412-3419, 2002. https://doi.org/10.2337/diabetes.51.12.3412
  48. Holst, J.J. Enteroglucagon. Annu Rev Physiol 59: 257-271, 1997. https://doi.org/10.1146/annurev.physiol.59.1.257
  49. Kreymann, B., Williams, G., Ghatei, M.A., Bloom, S.R. Glucagon-like peptide-1 7-36: a physiological incretin in man. Lancet 2: 1300-1304, 1987.
  50. Turton, M.D., O'Shea, D., Gunn, I., Beak, S.A., Edwards, C.M., Meeran, K., Choi, S.J., Taylor, G.M., Heath, M.M., Lambert, P.D., Wilding, J.P., Smith, D.M., Ghatei, M.A., Herbert, J., Bloom, S.R. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379: 69-72, 1996. https://doi.org/10.1038/379069a0
  51. Naslund, E., Gutniak, M., Skogar, S., Rössner, S., Hellström, P.M. Glucagon-like peptide 1 increases the period of postprandial satiety and slows gastric emptying in obese men. Am J Clin Nutr 68: 525-530, 1998.
  52. Schwartz, M.W., Woods, S.C., Porte, D. Jr., Seeley, R.J., Baskin, D.G. Central nervous system control of food intake. Nature 404: 661-671, 2000.
  53. Kalra, S.P., Dube, M.G., Pu, S., Xu, B., Horvath, T.L., Kalra, P.S. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev 20: 68-100, 1999. https://doi.org/10.1210/er.20.1.68
  54. Cone, R.D., Cowley, M.A., Butler, A.A., Fan, W., Marks, D.L., Low, M.J. The arcuate nucleus as a conduit for diverse signals relevant to energy homeostasis. Int J Obes Relat Metab Disord 25(Suppl. 5):S63-S67, 2001.
  55. Luiten, P.G., ter Horst, G.J., Steffens, A.B. The hypothalamus, intrinsic connections and outflow pathways to the endocrine system in relation to the control of feeding and metabolism. Prog Neurobiol 28: 1-54, 1987. https://doi.org/10.1016/0301-0082(87)90004-9
  56. Simpson, K.A., Niamh, M., Martin, N.M., Bloom, S.R. Hypothalamic regulation of food intake and clinical therapeutic applications. Arq Bras Endocrinol Metab 53: 120-128, 2009.
  57. Nambu, T., Sakurai, T., Mizukami, K., Hosoya, Y., Yanagisawa, M., Goto, K. Distribution of orexin neurons in the adult rat brain. Brain Res 827: 243-260, 1999. https://doi.org/10.1016/S0006-8993(99)01336-0
  58. Saper, C.B. Staying awake for dinner: hypothalamic integration of sleep, feeding, and circadian rhythms. Prog Brain Res 153: 243-252, 2006.
  59. Muraki, Y., Yamanaka, A., Tsujino, N., Kilduff, T.S., Goto, K., Sakurai, T. Serotonergic regulation of the orexin/hypocretin neurons through the 5-HT1A receptor. J Neurosci 24:7159-7166, 2004. https://doi.org/10.1523/JNEUROSCI.1027-04.2004
  60. Thomas, T., Burguera, B., Melton L.J. 3rd, Atkinson, E.J., O'Fallon, W.M., Riggs, B.L., Khosla, S. Relationship of serum leptin levels with body composition and sex steroid and insulin levels in men and women. Metabolism 49: 1278-1284, 2000. https://doi.org/10.1053/meta.2000.9519
  61. Cowley, M.A. Smart, J.L., Rubinstein, M., Cerdán, M.G., Diano, S., Horvath, T.L., Cone, R.D., Low, M.J. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411: 480-484, 2001. https://doi.org/10.1038/35078085
  62. Wang, L., Martínez, V., Barrachina, M.D., Taché, Y. Fos expression in the brain induced by peripheral injection of CCK or leptin plus CCK in fasted lean mice. Brain Res 791: 157-166, 1998. https://doi.org/10.1016/S0006-8993(98)00091-2
  63. Hamao, M., Matsuda, H., Nakamura, S., Nakashima, S., Semura, S., Maekubo, S., Wakasugi, S., Yoshikawa, M. Anti-obesity effects of the methanolic extract and chakasaponins from the flower buds of Camellia sinensis in mice. Bioorg Med Chem 19: 6033-6041, 2011. https://doi.org/10.1016/j.bmc.2011.08.042
  64. Bai, F.L., Yamano, M., Shiotan,i Y., Emson, P.C., Smith, A.D., Powell, J.F., Tohyama, M. An arcuato-paraventricular and -dorsomedial hypothalamic neuropeptide Y-containing system which lacks noradrenaline in the rat. Brain Res 331: 172-175, 1985. https://doi.org/10.1016/0006-8993(85)90730-9
  65. Stanley, B.G., Leibowitz, S.F. Neuropeptide Y injected in the paraventricular hypothalamus: a powerful stimulant of feeding behavior. Proc Natl Acad Sci USA 82: 3940-3943, 1985. https://doi.org/10.1073/pnas.82.11.3940
  66. Chronwall, B.M. Anatomy and physiology of the neuroendocrine arcuate nucleus. Peptides 6 [Suppl 2]:1-11, 1985.
  67. Smith, AI., Funder, J.W. Proopiomelanocortin processing in the pituitary, central nervous system, and peripheral tissues. Endocr Rev 9: 159-179, 1988. https://doi.org/10.1210/edrv-9-1-159