Anti-inflmmatory Effects of Scutellaria baicalensis Georgi Water Extract in the THP-1 Cells Activated by Advanced Glycation End Products

황금 물추출물의 당화종말산물로 유도한 THP-1 세포의 염증반응 억제효과

  • Park, Pyeong-Beom (Department of Pathology, College of Oriental Medicine, Woosuk University) ;
  • Kim, Min-Jun (Department of Pathology, College of Oriental Medicine, Woosuk University) ;
  • Shin, Kyoung-Ho (Department of Pathology, College of Oriental Medicine, Woosuk University) ;
  • Lee, Kwang-Gyu (Department of Pathology, College of Oriental Medicine, Woosuk University) ;
  • Lee, Chang-Hyun (Department of Anatomy, College of Oriental Medicine, Woosuk University) ;
  • Lee, Sang-Ryong (Department of Meridian & Acupoint, College of Oriental Medicine, Woosuk University) ;
  • Ha, Ki-Tae (Division of Applied Medicine, School of Korean Medicine, Pusan National University) ;
  • Jeong, Han-Sol (Division of Applied Medicine, School of Korean Medicine, Pusan National University)
  • 박평범 (우석대학교 한의과대학 병리학교실) ;
  • 김민준 (우석대학교 한의과대학 병리학교실) ;
  • 신경호 (우석대학교 한의과대학 병리학교실) ;
  • 이광규 (우석대학교 한의과대학 병리학교실) ;
  • 이창현 (우석대학교 한의과대학 해부학교실) ;
  • 이상룡 (우석대학교 한의과대학 경혈학교실) ;
  • 하기태 (부산대학교 한의학전문대학원 응용의학부) ;
  • 정한솔 (부산대학교 한의학전문대학원 응용의학부)
  • Received : 2012.05.02
  • Accepted : 2012.06.16
  • Published : 2012.06.25

Abstract

Scutellaria baicalensis Georgi, which has been known to be able to clear away heat and remove dampness, was used for febrile disease. It is now clear that Advanced glycation end products (AGEs) play major roles in the pathogenesis of diabetic complications such as atherosclerosis. In this study, we examined whether Scutellaria baicalensis Georgi suppress the AGE mediated inflammatory responses in the THP-1 cells. AGE treatment increased the gene expression of pro-inflammatory cytokines such as tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-$1{\beta}$ (IL-$1{\beta}$), monocyte chemotactic protein-1 (MCP-1) and cyclooxygenase-2 (COX-2). Reverse transcriptase-polymerase chain reaction and Western blot analysis revealed that S. baicalensis had inhibitory effects on the expression of pro-inflammatory genes and protein levels in AGE-treated THP-1 cells. S. baicalensis had also reduced the production of ROS in the AGE-treated THP-1 cells. These results suggest that S. baicalensis has inhibitory effects for the development of diabetic vascular complication.

Keywords

References

  1. Hu, F.B., Manson, J.E., Stampfer, M.J., Colditz, G., Liu, S., Solomon, C.G., Willett, W.C. Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N Engl J Med. 345: 790-797, 2001. https://doi.org/10.1056/NEJMoa010492
  2. Zimmet, P., Alberti, K.G., Shaw, J. Global and societal implications of the diabetes epidemic. Nature. 414: 782-787, 2001. https://doi.org/10.1038/414782a
  3. Kahn, S.E., Hull, R.L., Utzschneider, K.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 444: 840-846, 2006. https://doi.org/10.1038/nature05482
  4. Kathryn, E., Wellen, Gokhan, S. Hotamisligil. Inflammation, stress, and diabetes. J Clin Invest. 115(5):1111-1119, 2005.
  5. Schmidt, M.I., Saad, M.J.A., Duncan, B.B. Subclinical inflammation and obesity, diabetes and related disorders. Drug Discovery Today: Disease Mechanisms. 3(3):307-312, 2005.
  6. Harja, E., Bu, D.X., Hudson, B., Chang, J.S., Shen, X., Hallam, K., et al. Vascular and inflammatory stress mediate atherosclerosis via RAGE and its ligands in apoE-/-mice. J Clin Invest. 118: 183-191, 2008. https://doi.org/10.1172/JCI32703
  7. Yamamoto, Y., Kato, I., Doi, T., Yonekura, H., Ohashi, S., Takeuchi, M., Watanabe, T., Yamagishi, S., Sakurai, S., Takasawa, S., Okamoto, H., Yamamoto, H. Development and prevention of advanced diabetic nephropathy in RAGE-overexpressing mice. J Clin Invest 108: 261-268, 2001.
  8. Jeong, S.H., Lee, K.G., Lee, C.H., Lee, S.R., Kim, J.E., Ha, K.T., Shin, S.W., Jeong, H.S. Effects of Hwanggeum-tang water extract on the expression of pro-inflammatory response elicited by advanced glycation end products in THP-1 cells. Korean J. Oriental Physology & Pathology. 26(2):147-154, 2012.
  9. 전국한의과대학본초학교수 공편. 本草學, 서울, 도서출판 영 림사. pp 178-179, 1992.
  10. 楊艶, 梁日欣, 楊濱, 王怡薇, 王嵐, 王彦禮. 黄芩 等5种中藥提 物的抗脂 質過氧化作用研究. 中國實驗方劑學雜誌. 15(9):46-48, 2009.
  11. Mosmann, T. Rapid colorimetric assay for cellular growth and survival application to proliferation and cytotoxic assays. J Immunol Methods. 65: 55-63, 1983. https://doi.org/10.1016/0022-1759(83)90303-4
  12. Wild, S., Roglic, G., Green, A., Sicree, R., King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care, 27(5):1047-1053, 2004. https://doi.org/10.2337/diacare.27.5.1047
  13. Ruderman, N., Williamson, J.R., Brownlee, M. Glucose and diabetic vascular disease. FASEB J. 6: 2905-2914, 1992.
  14. Pugliese, G., Tilton, R.G., Williamson, J.R. Glucose-induced metabolic imbalances in the pathogenesis of diabetic vascular disease. Diabete Metab Rev. 7: 35-59, 1991. https://doi.org/10.1002/dmr.5610070106
  15. Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature. 414: 813-820, 2001. https://doi.org/10.1038/414813a
  16. Brownlee, M., Cerami, A., Vlassara, H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med. 318: 1315-1321, 1988. https://doi.org/10.1056/NEJM198805193182007
  17. Bucala, R., Cerami, A., Vlassara, H. Advanced glycosylation end products in diabetic complications. Diabetes Rev. 3: 258-268, 1995.
  18. Vlassara, H. Recent progress in advanced Nglycation end products and diabetic complications. Diabetes. 46(2):S19-S25, 1997.
  19. Bierhaus, A., Hofmann, M.A., Ziegler, R., Nawroth, P. AGEs and their interaction with AGE-receptors in vascular disease and diabetes mellitus. I. The AGE concept. Cardiovasc Res. 37: 586-600, 1998. https://doi.org/10.1016/S0008-6363(97)00233-2
  20. Chappy, O., Dosquet, C., Wautier, M.P., Wautier, J.L. Advanced glycation end products, oxidant stress and vascular lesions. Eur J Clin Invest. 27: 97-108, 1997.
  21. White, M.F. The insulin signaling system and the IRS protein. Diabetologia. 40: S2-S17, 1997. https://doi.org/10.1007/s001250051387
  22. Saltiel, A.R., Pessin, J.E. Insulin signaling pathway in time and space. Trends Cell Biol. 12: 65-71, 2002. https://doi.org/10.1016/S0962-8924(01)02207-3
  23. Yin, M.J., Yamamoto, Y., Gaynor, R.B. The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature. 396: 77-80, 1998. https://doi.org/10.1038/23948
  24. Aguirre, V., Uchida, T., Yenush, L., Davis, R., White, M.F. The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J. Biol. Chem. 275: 9047-9054, 2000. https://doi.org/10.1074/jbc.275.12.9047
  25. Ozcan, U., Cao, Q., Yilmaz, E., Lee, A.H., Iwakoshi, N.N., Ozdelen, E., et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science. 306: 457-461, 2004. https://doi.org/10.1126/science.1103160
  26. Nakatani, Y., Kaneto, H., Kawamori, D., Yoshiuchi, K., Hatazaki, M., Matsuoka, T., et al. Involvement of endoplasmic reticulum stress in insulin resistance and diabetes. J. Biol. Chem. 280: 847-851, 2005.
  27. Martin, J., Dusek, J. The Baikal scullcap (Scutellaria baicalensis Georgi)-a potential source of new drugs. Ceska Slov Farm. 51(6):277-283, 2002.
  28. Broncel, M. Antiatherosclerotic properties of flavones from the roots of Scutellaria baicalensis Georgi. Wiad Lek. 60(5-6):294-297, 2007.
  29. Kowalczyk, E., Krzesinski, P., Kura, M., Niedworok, J., Kowalski, J., Bllaszczyk, J. Pharmacological effects of flavonoids from scutellaria baicalensis. Przegl Lek. 63(2):95-96, 2006.
  30. Ames, N.B., Shigenaga, M.K., Hagen, T.M. Oxidants, antioxidants and the degenerative disease of aging. Proc. Natl. Acad. Sci. 90: 7915-7922, 1993. https://doi.org/10.1073/pnas.90.17.7915
  31. Cerutti, P.A., Trump, B.F. Inflammation and oxidative stress in carcinogenesis. Cancer Cells. 3: 1-7, 1991.
  32. Blois, M.S. Antioxidant determination by the use a stable free radicals. Nature. 26: 1191-1204, 1958.
  33. Hou, Y.C., Janczuk, A., Wang, P.G. Current trends in the development of nitric oxide donors. Curr. Pharm. Des. 5(6):417-471, 1999.
  34. Tylor, B.S., Kion, Y.M., Wang, Q.I., Sharpio, R.A., Billiar, T.R., Geller, D.A. Nitric oxide down regulates hepatocyte-inducible nitric oxide synthase gene expression. Arch. Surg. 1(32):1177-1182, 1997.
  35. Xie, Q.W., Kashiwabara, Y., Nathan, C. Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J Biol Chem. 269: 4705-4708, 1994.
  36. Hiroki, S., Masao, K., Eriko, T., Michiko, S., Chieko, K., Shingo, Y., et al. Inducible nitric oxide synthase plays a role in LPS-induced hyperglycemia and insulin resistance. Am J Physiol Endocrinol Metab. 282: 386-394, 2002.
  37. Esaki, T., Hayashi, T., Muto, E., Yamada, K., Kuzuya, M., Iguchi, A. Expression of inducible nitric oxide systhase in T lymphocytes and macrophages of cholesterol-fed rabbits. Atherosclerosis. 128: 39-46, 1997. https://doi.org/10.1016/S0021-9150(96)05976-X
  38. Schleicher, E.D., Wagner, E., Nerlich, A.G. Increased accumulation of glycoxidation product $N{\varepsilon}$ -(carboxymethyl)lysine in human tissue in diabetes and aging. J Clin Invest. 99: 457-468, 1997. https://doi.org/10.1172/JCI119180
  39. Maxwell, S.R.J. Prospects for the use of antioxidant therapies. Drugs. 49: 345-361, 1995. https://doi.org/10.2165/00003495-199549030-00003
  40. Halliwell, B., Gutteridege, J.M.C. Free radicals in Biology and Medicine, 2nd ed. Oxford, Clarendon Press. pp 416-494, 1989.
  41. Gu, L., Tseng, S.C., Rollins, B.J. Monocyte chemoattractant protein-1. Chem Immunol. 72: 7-29, 1999.
  42. Langenbach, R., Morham, S.G., Tiano, H.F., Loftin, C.D., Ghanayem, B.I., Chulada, P.C., et al. Prostaglandin synthase 1 gene disruption in mice reduces arachidonic acid-induced inflammation and indomethacin-induced gastric ulceration. Cell. 83: 483-492, 1995. https://doi.org/10.1016/0092-8674(95)90126-4
  43. Inoue, H., Umesono, K., Nishimori, T., Hirata, T., Tanabe, T. Glucocorticoid-mediated suppression of the promotor activity of the cyclooxygenase-2 gene is modulated by expression of its receptor in vascular endothelial cells. Biochem Bioph Res Commun. 254: 292-298, 1999. https://doi.org/10.1006/bbrc.1998.9939
  44. Tabatabaie, T., Vasquez-Weldon, A., Moore, D.R., Kotake, Y. Free Radicals and the Pathogenesis of Type 1 Diabetes: beta-Cell Cytokine-Mediated Free Radical Generation Via Cyclooxygenase-2. Diabetes. 52: 1994-1999, 2003. https://doi.org/10.2337/diabetes.52.8.1994
  45. Skata, N., Uesugi, N., Takebayashi, S., Nagai, R., Jono, T., Horiuchi, S., et al. Glycoxidation and lipid peroxidation of low-density lipoprotein can synergistically enhance atherogenesis. Cardiovasc Res 49: 466-475, 2001. https://doi.org/10.1016/S0008-6363(00)00262-5
  46. Imani, F., Horii, Y., Suthanthiran, M., Skolnik, E.Y., Makita, Z., Sharma, V., et al. Advanced glycosylation endproduct-specific receptors on human and rat T-lymphocytes mediate synthesis of interferon-${\gamma}$. J Exp Med. 178: 2165-2172, 1993. https://doi.org/10.1084/jem.178.6.2165
  47. Lander, H.M., Tauras, J.M., Ogiste, J.S., Hori, O., Moss, R.A., Schmidt, A.M. Activation of the receptor for advanced glycation end products triggers a p21ras-dependent mitogen-activated protein kinase pathway regulated by oxidant stress. J Biol Chem. 272: 17810-17814, 1997. https://doi.org/10.1074/jbc.272.28.17810
  48. Yeh, C.H., Sturgis, L., Haidacher, J., Zhang, X.N., Sherwood, S.J., Bjercke, R.J., et al. Requirement for p38 and p44/p42 mitogen-activated protein kinases in RAGE-mediated nuclear factor-${\kappa}B$ transcriptional activation and cytokine secretion. Diabetes. 50: 1495-1504, 2001. https://doi.org/10.2337/diabetes.50.6.1495
  49. Baeuerle, P.A., Baltimore, D. NF-${\kappa}B$: ten years after. Cell. 87: 13-20, 1996. https://doi.org/10.1016/S0092-8674(00)81318-5
  50. Barnes, P.J., Karin, M. Nuclear Factor-${\kappa}B$-a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med. 336: 1066-1071, 1997. https://doi.org/10.1056/NEJM199704103361506
  51. Jacobs, M.D., Harrison, S.C. Structure of an $I{\kappa}B{\alpha}/NF-{\kappa}B$ Complex. Cell. 95(6):749-758, 1998. https://doi.org/10.1016/S0092-8674(00)81698-0
  52. Bierhaus, A., Schiekofer, S., Schwaninger, M., Andrassy, M., Humpert, Per, M., Chen, J., et al. Diabetes-Associated Sustained Activation of the Transcription Factor Nuclear Factor-B. Diabete. 50: 2792-2808, 2001. https://doi.org/10.2337/diabetes.50.12.2792