Anti-inflammatory Effect of Red Ginseng through Regulation of MAPK in Lipopolysaccharide-stimulated RAW264.7

Lipopolysaccharide로 유도된 RAW264.7 세포에서 MAPK에 의한 홍삼추출물의 항염증 효과

  • Shin, Ji-Su (School of Koran Medicine, Pusan National University) ;
  • Kim, Jong-Myoung (College of Fisheries Sciences, Pukyong National University) ;
  • An, Won-Gun (School of Koran Medicine, Pusan National University)
  • 신지수 (부산대학교 한의학전문대학원) ;
  • 김종명 (부경대학교 수산과학대학) ;
  • 안원근 (부산대학교 한의학전문대학원)
  • Received : 2012.04.23
  • Accepted : 2012.05.18
  • Published : 2012.06.25

Abstract

Inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) are important inflammatory mediators implicated in pathogenesis of inflammation and certain types of human cancers. The present study was designed to determine whether Red Ginseng (RG) could modulate $I{\kappa}B$-kinase, iNOS and COX-2 gene expression and immune responses in RAW 264.7 macrophages stimulated with lipopolysaccharide (LPS). RG extract suppressed the expression of LPS-induced $I{\kappa}B$, iNOS, COX-2, and immune responses in a dose-dependent manner. It also showed an anti-inflammatory effect by inhibiting NF-${\kappa}B$ immune response induced by LPS treatment. Inhibitory effect of RG on LPS-induced inflammation was mediated by suppressed phosphorylation of ERK, JNK and p38 through the regulation of the mitogen-activated protein kinase (MAPK) pathway leading to a decreased production of NO, iNOS, COX-2 and NF-${\kappa}B$. The results implied the role of RG as an inflammation regulator and its possible application for curing inflammatory diseases.

Keywords

References

  1. Higuchi, M., Higashi, N., Taki, H., Osawa, T. Cytolytic mechanisms of activated macrophages. Tumor necrosis factor and L-arginine-dependent mechanisms act synergistically as the major cytolytic mechanisms of activated macrophages. Journal of Immunology. 144: 1425-1431, 1990.
  2. 한의과대학 방제학교수 공편저. 방제학. 서울, 영림사, pp 535-536, 1999.
  3. McCartney-Francis, N., Allen, J.B., Mizel, D.E., Albina, J.E., Xie, Q.W., Nathan, C.F., Wahl, S.M. Suppression of arthritis by an inhibitor of nitric oxide synthase. Journal of Experimental Medicine. 178: 749-754, 1993. https://doi.org/10.1084/jem.178.2.749
  4. Baeurle, P.A. $I{\kappa}B-NF-{\kappa}B$ structure: at the interface of inflammation control. Cell. 95: 729-731, 1998. https://doi.org/10.1016/S0092-8674(00)81694-3
  5. Knowles, R.G., Moncada, S. Nitric oxide as a signal in blood vessels. Trends in Biochemical Sciences. 17: 399-402, 1992. https://doi.org/10.1016/0968-0004(92)90008-W
  6. Nathan, C. Nitric oxide as a secretory product of mammalian cells. FASEB Journal. 6: 3051-3064, 1992.
  7. Harris, S.G., Padilla, J., Koumas, L., Ray, D., Phipps, R.P. Prostaglandins as modulators of immunity. Trends in Immunology. 23: 144-150, 2002. https://doi.org/10.1016/S1471-4906(01)02154-8
  8. Akira, S., Takeda, K. Toll-like receptor signalling. Nature Reviews Immunology. 4: 499-511, 2004.
  9. Gomez, P.F., Pillinger, M.H., Attur, M., Marjanovic, N., Dave, M., Park, J., Bingham, C.O., Al Mussawir, H., Abramson, S.B. Resolution of inflammation: prostaglandin E2 dissociates nuclear trafficking of individual NF-kappa B subunits (p65, p50) in stimulated rheumatoid synovial fibroblasts. Journal of Immunology. 175: 6924-6930, 2005.
  10. Shin, H.M. Wild Ginseng exerts anti-inflammatory effects via $NF-{\kappa}B$ inactivation in RAW 264.7 cells. Korean Journal of Oriental Physiology & Pathology. 21: 498-503, 2007.
  11. 최성규. 한약생산학 각론. 서울, 신광. pp 159-178, 2009.
  12. 조재열. 홍삼 유해 성분들의 면역조절 효능. 한국식품저장유통학회. 8: 6-12, 2009.
  13. Jang, S.K., Kim, J.H., Chung, Y.S., Ahn, D.C., Kang, M.J., Lee, D.G., Kim, S.H. An Experimental Study on the Effect of Immunopotential and the Anticancer Effect of RG. Journal of Ginseng Research. 18: 151-159, 1994.
  14. Shao, Z.H., Xie, J.T., Vanden Hoek, T.L., Mehendale, S., Aung, H., Li, C.Q., Qin, Y., Schumacker, P.T., Becker, L.B., Yuan, C.S. Antioxidant effects of American ginseng berry extract in cardiomyocytes exposed to acute oxidant stress. Biochimca et Biophysica Acta. 1670: 165-171, 2004. https://doi.org/10.1016/j.bbagen.2003.12.001
  15. Bae, E.A., Han, M.J., Baek, N.I., Kim, D.H. In vitro anti-Helicobacter pylori activity of panaxytriol isolate from ginseng. Archives of Pharmacol Research. 24: 297-299, 2001. https://doi.org/10.1007/BF02975095
  16. Park, E.K., Choo, M.K., Han, M.J., Kim, D.H. Ginsenoside Rh1 possesses antiallergic and anti-inflammatory activities. International Archives of Allergy & Immunology. 133: 113-120, 2004. https://doi.org/10.1159/000076383
  17. Nam, K.Y. The comparative understanding between red ginseng and white ginsengs, processed ginsengs (Panax ginseng C. A. Meyer). Journal of Ginseng Research. 29: 1-18, 2005. https://doi.org/10.5142/JGR.2005.29.1.001
  18. 김동청, 황우익, 인만진, 이성동. 인삼의 지용성 추출물 투여 가 면역기능에 미치는 영향. Journal of Ginseng Research. 32: 19-25, 2008. https://doi.org/10.5142/JGR.2008.32.1.019
  19. Baldwin As. The NF kappa B and I kappa B proteins: new discoveries and insights. Annual Review of Immunology. 14: 649-683, 1996. https://doi.org/10.1146/annurev.immunol.14.1.649
  20. Lawrence, T., Willoughby, D.A., Gilroy, D.W. Anti-inflammatory lipid mediators and insights into the resolution of inflammation Nature Reviews Immunology. 2: 787-795, 2002.
  21. Kaplanski, G., Marin, V., Montero-Julian, F., Mantovani, A., Farnarier, C. IL-6: a regulator of the transition from neutrophil to monocyte recruitment during inflammation. Trends in Immunology. 24: 25-29, 2003. https://doi.org/10.1016/S1471-4906(02)00013-3
  22. Namazi, M.R. Cetirizine and allopurinol as novel weapons against cellular autoimmune disorders. International Immunopharmacology. 4: 349-353, 2004. https://doi.org/10.1016/j.intimp.2004.01.022
  23. Hyun, M.S., Hur, J.M., Shin, Y.S., Song, B.J., Mun, Y.J., Woo, W.H. Comparison study of white ginseng, red ginseng, and fermented red ginseng on the protective effect of LPS-induced inflammation in RAW 264.7 cells. Journal of Applied Biological Chemistry. 52: 21-27, 2009. https://doi.org/10.3839/jabc.2009.004
  24. Pande, V., Ramos, M.J. $NF-{\kappa}B$ in human disease : current inhibitors and prospects for de novo structure based design of inhibitors. Current Medicinal Chemistry. 12: 357-374, 2005. https://doi.org/10.2174/0929867053363180
  25. Berg, J., Fellier, H., Christoph, T., Grarup, J., Podolsky, D.K. Peroxynitrite-induced rat colitis-a new model of colonic inflammation. Gastroenterology. 105: 1681-1688, 1993.
  26. Aggarwal, B.B. Nuclear factor-${\kappa}B$ : The enemy within. Cancer Cell. 6: 203-208, 2004. https://doi.org/10.1016/j.ccr.2004.09.003
  27. Johnson, G.L., Lapadat, R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 298: 1911-1912, 2002. https://doi.org/10.1126/science.1072682
  28. Surh, Y.J., Chun, K.S., Cha, H.H., Han, S.S., Keum, Y.S., Park, K.K., Lee, S.S. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of $NF-{\kappa}B$ activation. Mutation Research. 480-481: 243-268, 2001.
  29. Robinson, M.J., Cobb, M.H. Mitogen-activated protein kinase pathways. Current Opinion in Cell Biology. 9: 180-186, 1997. https://doi.org/10.1016/S0955-0674(97)80061-0
  30. Hidding, U., Mielke, K., Waetzig, V., Brecht, S., Hanisch, U., Behrens, A., Wagner, E., Herdegen, T. The c-Jun N-terminal kinases in cerebral microglia: immunological functions in the brain. Biochemical Pharmacology. 64: 781-788, 2002. https://doi.org/10.1016/S0006-2952(02)01139-5
  31. Waetzig, V., Czeloth, K., Hidding, U., Mielke, K., Kanzow, M., Brecht, S., Goetz, M., Lucius, R., Herdegen, T., Hanisch, U.K. c-Jun N-terminal kinases (JNKs) mediate pro-inflammatory actions of microglia. Glia. 50: 235-246, 2005. https://doi.org/10.1002/glia.20173