DOI QR코드

DOI QR Code

Application of Hot Start PCR Method in PCR-based Preimplantation Genetic Diagnosis

  • Kim, Sung-Ah (Department of Obstetrics and Gynecology, Seoul National University Hospital) ;
  • Kang, Moon-Joo (Department of Obstetrics and Gynecology, Seoul National University Hospital) ;
  • Kim, Hee-Sun (Department of Obstetrics and Gynecology, Seoul National University Hospital) ;
  • Oh, Sun-Kyung (Department of Obstetrics and Gynecology, Seoul National University Hospital) ;
  • Ku, Seung-Yup (Department of Obstetrics and Gynecology, Seoul National University Hospital) ;
  • Choi, Young-Min (Department of Obstetrics and Gynecology, Seoul National University Hospital) ;
  • Jun, Jong-Kwan (Department of Obstetrics and Gynecology, Seoul National University Hospital) ;
  • Moon, Shin-Yong (Department of Obstetrics and Gynecology, Seoul National University Hospital)
  • Received : 2012.03.08
  • Accepted : 2012.05.22
  • Published : 2012.06.30

Abstract

Purpose: To determine a method to improve the efficacy and accuracy of preimplantation genetic diagnosis (PGD) - polymerase chain reaction (PCR), we compared hot start PCR and conventional multiplex nested PCR. Materials and Methods: This study was performed with single lymphocyte isolated from whole blood samples that were obtained from two couples with osteogenesis imperfecta (OI). We proceeded with conventional multiplex nested PCR and hot start PCR in which essential reaction components were physically removed, and we compared the amplification rate, allele dropout rate and nonspecific products. Afterward, we used selective method for PGD. Results: In the two couples, the respective amplification rate were 93.5% and 80.0% using conventional multiplex nested PCR and 95.5% and 92.0% using hot start PCR. The respective mean allele dropout rates for the two couples were 42.0% and 14.0% with conventional multiplex nested PCR and 36.0% and 6.0% with hot start PCR. Conclusion: The results demonstrate that the hot start PCR procedure provides higher amplification rates and lower allele dropout rate than the conventional method and that it decreased the nonspecific band in multiplex nested PCR. The hot start method is more efficient for analyzing a single blastomere in clinical PGD.

Keywords

References

  1. Handyside AH, Kontogianni EH, Hardy K, Wiston RML. Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature 1990;344:768-70. https://doi.org/10.1038/344768a0
  2. Harton GL, Magli MC, Lundin K, Montag M, Lemmen J, Harper JC. ESHRE PGD Consortium/Embryology Special Interest Group best practice guidelines for polar body and embryo biopsy for preimplantation genetic diagnosis/screening (PGD/PGS). Hum Reprod 2011;26:41-6. https://doi.org/10.1093/humrep/deq265
  3. Spits C, Sermon K. PGD for monogenic disorders: aspects of molecular biology. Prenat Diagn 2009;29:50-6. https://doi.org/10.1002/pd.2161
  4. Harper JC, Sengupta SB. Preimplantation genetic diagnosis: State of the ART 2011. Hum Genet 2012;131:175-86. https://doi.org/10.1007/s00439-011-1056-z
  5. Chien A, Edgar DB, Trela JM. Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J Bacteriol 1976;127: 1550-7.
  6. Lebedev A. Heat-activatable primers for hot-start PCR: oligonucleotide synthesis and basic PCR setup. Curr Protoc Nucleic Acid Chem 2009;4. 35:1-17.
  7. Kramer MF, Coen DM. Enzymatic amplification of DNA by PCR: standardprocedures and optimization. Curr Protoc Immunol 2011; chapter10: unit 10.20.
  8. Malcov M, Schwartz T, Mei-Raz N, Yosef DB, Amit A, Lessing JB, et al. Multiplex nested PCR for preimplantation genetic diagnosis of spinal muscular atrophy. Fetal Diagn Ther 2004;19:199-206. https://doi.org/10.1159/000075151
  9. Girardet A, Hamamah S, Dechaud H, Anahory T, Coubes C, Hedon B, et al. Specific detection of deleted and non-deleted dystrophin exons together with gender assignment in preimplantation genetic diagnosis of Duchenne muscular dystrophy. Mol Hum Reprod 2003;9:421-7. https://doi.org/10.1093/molehr/gag050
  10. Piyamongkol W, Bermudez MG, Harper JC, Wells D. Detailed investigation of factors influencing amplification efficiency and allele drop-out in single cell PCR: implications for preimplantation genetic diagnosis. Mol Hum Reprod 2003;9:411-20. https://doi.org/10.1093/molehr/gag051
  11. Handyside AH, Robinson MD, Simpson RJ, Omar MB, Shaw MA, Grudzinskas JG, et al. Isothermal whole genome amplification from single and small numbers of cells: a new era for preimplantation genetic diagnosis of inherited disease. Mol Hum Reprod 2004;10:767-72. https://doi.org/10.1093/molehr/gah101
  12. Ren Z, Zhou C, Xu Y, Deng J, Zeng H, Zeng Y. Mutation and haplotype analysis for Duchenne muscular dystrophy by single cell multiple displacement amplification. Mol Hum Reprod 2007;13:431-6. https://doi.org/10.1093/molehr/gam020
  13. Ray PF, Handyside AH. Increasing the denaturation temperature during the first cycles of amplification reduces allele dropout from single cells for preimplantation genetic diagnosis. Mol Hum Reprod 1996;2:213-8. https://doi.org/10.1093/molehr/2.3.213
  14. Wells D, Sherlock JK. Strategies for preimplantation genetic diagnosis of single gene disorders by DNA amplification. Prenat Diagn 1998;18: 1389-401. https://doi.org/10.1002/(SICI)1097-0223(199812)18:13<1389::AID-PD498>3.0.CO;2-6
  15. Lissens W, Sermon K. Preimplantation genetic diagnosis: current status and new developments. Hum Reprod 1997;12:1756-61. https://doi.org/10.1093/humrep/12.8.1756
  16. Kermekchiev MB, Tzekov A, Barnes WM. Cold-sensitive mutants of Taq DNA polymerase provide a hot start for PCR. Nucleic Acids Res 2003; 31:6139-47. https://doi.org/10.1093/nar/gkg813
  17. Chou Q, Russell M, Birch DE, Raymond J, Bloch W. Prevention of pre- PCR mis-priming and primer dimerization improves low-copy-number amplifications. Nucleic Acids Res 1992;20:1717-23. https://doi.org/10.1093/nar/20.7.1717
  18. D'Aquila RT, Bechtel LJ, Videler JA, Eron JJ, Gorczyca P, Kaplan JC. Maximizingsensitivity and specificity of PCR by preamplification heating. Nucleic Acids Res 1991;19:3749. https://doi.org/10.1093/nar/19.13.3749
  19. Barnes WM, Rowlyk KR. Magnesium precipitate hot start method for PCR. Mol Cell Probes 2002;16:167-71. https://doi.org/10.1006/mcpr.2002.0407
  20. Kermekchiev MB, Tzekov A, Barnes WM.Cold-sensitivemutants of Taq DNA polymerase provide a hot start for PCR. Nucleic Acids Res 2003; 31:6139-47. https://doi.org/10.1093/nar/gkg813
  21. Malcov M, Ben-Yosef D, Schwartz T, Mey-Raz N, AzemF, Lessing JB, et al. Preimplantation genetic diagnosis (PGD) for Duchenne muscular dystrophy (DMD) by triplex-nested PCR. Prenat Diagn 2005;25:1200-5. https://doi.org/10.1002/pd.1317
  22. Sermon KD. Preimplantation genetic diagnosis. Verh K Acad Geneeskd Belg 2006;68:5-32
  23. Thornhill AR, Snow K. Molecular diagnostics in preimplantation genetic diagnosis. J Mol Diagn 2002;4:11-29. https://doi.org/10.1016/S1525-1578(10)60676-9
  24. Kim SA, Yoon JA, Kang MJ, Choi YM, Chae SJ, Moon SY. An efficient and reliable DNA extraction method for preimplantation genetic diagnosis: a comparison of allele drop out and amplification rates using different single cell lysis methods. Fertil Steril 2009;92:814-8. https://doi.org/10.1016/j.fertnstert.2008.06.033
  25. Practice Committee of Society for Assisted Reproductive Technology; Practice Committee of American Society for Reproductive Medicine. Preimplantation genetic testing: a Practice Committee opinion. Fertil Steril 2008;90:136-43.
  26. Harton GL, De Rycke M, Fiorentino F, Moutou C, Sen Gupta S, Traeger- Synodinos J, et al. ESHREPGD consortium best practice guidelines for amplification-based PGD. Hum Reprod 2011;26:33-40. https://doi.org/10.1093/humrep/deq231