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production of alternative metabolites, including the following: 
the corresponding carnitine-ester, i.e., butyryl carnitine (C4-C), 
the corresponding glycine-ester (butyryl glycine), butyrate, and 
ethylmalonic acid (EMA). C4-C, measured in blood, and EMA, 
measured in urine, are generally used as biochemical markers for 
SCADD.2) The clinical presentation is characterized by hypotonia, 
developmental delay, seizures, microcephaly, lethargy, scoliosis, and 
finally a combination of hypoglycemia, vomiting, poor feeding, and 
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Short-chain acyl-CoA dehydrogenase deficiency (SCADD; OMIM # 201470) is an autosomal recessive inborn error of mito­
chondrial fatty acid β-oxidation, presenting with a variety of clinical signs and symptoms. Developmental delay, hypertonia or 
hypotonia, ketotic hypoglycemia, and epilepsy are most frequently reported. In general, patients diagnosed through newborn 
screening have shown normal growth and development in contrast to those diagnosed as a result of clinically initiated evaluations. 
Here, the case of an asymptomatic Korean newborn with SCADD identified by tandem mass spectrometry is reported. The patient 
showed an elevated concentration of butyrylcarnitine detected on newborn screening. Urinary excretion of ethylmalonic acid was 
elevated by urine organic acid analysis. To confirm the diagnosis of SCADD, a direct sequencing analysis of 10 coding exons and the 
exon-intron boundaries of the ACADS gene were performed. Genetic analysis of ACADS showed the following novel compound 
heterozygous missense mutations: c.277C>A (p.Leu93Ile) on exon3 and c.682G>A (p.Glu288Lys) on exon6. These results will 
provide further evidence of mutational heterogeneity for SCADD.
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Introduction

Short-chain acyl-CoA dehydrogenase deficiency (SCADD; OMIM# 
201470) is a rare fatty acid oxidation (FAO) disorder with variable 
clinical presentations.1,2) SCADD catalyzes the dehydrogenation 
of butyryl-CoA (C4-CoA) during the first step of the short-chain 
fatty acid β-oxidation spiral.1,2) Impaired SCAD activity results 
in accumulation of its substrate (C4-CoA) and the subsequent 
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failure to thrive.3) Newborns with SCADD are now being identified due 
to widespread implementation of expanded newborn screening by 
tandem mass spectrometry.4) In general, patients diagnosed through 
newborn screening have shown normal growth and development 
in contrast to those diagnosed as a result of clinically initiated 
evaluations. 4)

We recently examined an asymptomatic Korean newborn with 
SCADD with novel mutations of the  ACADS gene. Here, we report on 
this patient, with a review of the literature.

Case Report

The female patient was born at 39 weeks of gestation, with a 
birth weight of 3,700 g. She was the first child of healthy non-
consanguineous Korean parents. The pregnancy with the 
patient was not complicated by hypertension or HELLP (Hemoly
sis, Elevated Liver Enzyme, and Low Platelet Count) syndrome. 
Her neonatal period was unremarkable. Birth height, weight, and 
head circumference were 58 cm (75-90th percentile), 3,700 g (75th 
percentile), and 39 cm (90-95th percentile), respectively. She 
was referred to our clinic on day 30 of life for abnormal newborn 
sc­reening test result (butyrylcarnitine 1.79 umol/L; normal range 
<1.5 umol/L). She showed no symptoms or signs. Laboratory-
investigations (L-carnitine, lactate/pyruvate, ammonia, glucose, 
blood pH, ketone, and transaminases) were normal, with the 
exception of slightly elevated CK (244 U/L, normal range: 5-217). 
Urinary organic acid analysis on admission showed increased 

amounts of EMA (77.92 mmol/mol Cr; normal range <14.6 
mmol/mol Cr) and methylsuccinic acid (MSA; 21.58 mmol/
mol Cr; normal range <8.8 mmol/mol Cr). Echocardiogram 
examination showed normal. On the basis of the findings of 
the urinary organic acid and tandem mass analysis, SCADD 
was strongly suspected. To confirm the diagnosis of SCADD, 
we performed a direct sequen­cing analysis of 10 coding exons 
and the exon-intron boundaries of the ACADS gene. Informed 
consent was obtained by the parents. Genetic analysis of ACADS 
revealed that she carries the compound heterozygous missense 
mutations c.277C>A (p.Leu93Ile) on exon3 and c.682G>A 
(p.Glu228Lys) on exon6 (Fig. 1). Both mutations are novel. These 
compound heterozygous mutations were derived from the 
mother (p.Glu228Lys) and father (p.Leu93Ile). In addition, seven 
known polymorphisms were detected, specifically c.321T>C, 
c360C>T, IVS5(-99)T>C, IVS6(-43)C>T, IVS7(+76), IVS8(+52)
C>T, and c.990C>T. Based on the diagnosis of SCADD, parents 
of the patient were advise to feed the patient a low fat diet and 
the patient was to have frequent feedings and glucose levels 
monitored, especially during acute illness. A therapeutic attempt 
with high-dose oral riboflavin (100 mg/day) was attempted 
from her age of 10 months, resulting in a decrease in EMA 
(67.66 mmol/mol Cr) and MSA (11.98 mmol/mol Cr) excretion 
(Fig. 2). During the follow up, she presented with recurrent 
attack of acute gastroenteritis without severe metabolic crisis 
and serum CK and butyrylcarnitine levels were normalized. 
She presented normal development on Denver developmental 
screening test (DDST) and normal growth pattern, height 93 cm 

Fig. 1. Partial genomic DNA sequence of the ACADS gene of the patient. The patient manifested 
compound heterozygous mutations, c.[277C>A];[682G>A] (p.[Leu93Ile];[Glu228Lys]). Upper elec­
trogram showed c.277C>A (p.Leu93Ile) and Lower electrogram showed c.682G>A (p.Glu228Lys). 
Mutant nucleotides are indicated with arrow and codons for amino acid were marked with linear 
bar. “M” means nucleotide C and A exist with heterozygosity. “R” means G and A.
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(>97th percentile), weight 15.4kg (>97th percentile), and head 
circumference 49cm (75-90th percentile) at 22 months of age. 

Discussion

SCADD is an autosomal recessive inborn error of mitochondrial 
FAO.4) Mitochondrial FAO results in the sequential cleavage of two 
carbon units from fatty acids and represents an important source of 
energy for the body during times of fasting and metabolic stress.4,5) 
SCAD is a flavoprotein consisting of four subunits, each of which 
contains one molecule of its cofactor flavin adenine dinucleotide 
(FAD) as a prosthetic group.1,4,6) SCAD, a mitochondrial enzyme of the 
FAO system, mediates the metabolic transition from acyl-CoA with 
four- or six-carbon chains to 2-enoyl-CoA in the first step of the β
-oxidation spiral.7) The SCAD enzyme is most active with butyryl-
CoA as substrate, thus leading to elevated levels of butyrylcarnitine, 
butyrylglycine, and EMA, in body fluids and cells, when SCAD enzyme 
activity is reduced.8) The frequency of SCADD is unknown, but results 
from newborn screening (NBS) suggest frequencies varying 
between 1:33,000 and 1:340,000.9)

Years of NBS have resulted in a different understanding of 
SCADD.10) Whereas this condition was regarded a potentially life-
threatening disorder prior to expanded NBS, patients identified by 
NBS seem to remain asymptomatic despite confirmation of severe 
enzyme deficiency.10) The clinical features in SCADD are extremely 
broad and difficult to correlate to the enzymatic defect; furthermore, 
they are often different from those seen in other FAO defects.9) The 
previously reported patients typically presented with neuromuscular 
symptoms, especially developmental delay, which is uncommon 
in the other β-oxidation defects.11) Neurological symptoms may be 
caused by EMA, which has been found to be toxic to neuronal cells, 

and free butyrate, which may cause encephalopathy.12) Butyric acid 
may also contribute to the disease course since it is well known to 
modulate gene expression in elevated levels due to its action as a 
histone deacetylase.4) In circumstances involving increased demand 
on mitochondrial FAO, such as prolonged fasting, concentrations 
of these potentially toxic metabolites may increase, resulting in 
reversible neurotoxicity.13,14) van Maldegem et al. reported one in 
three patients with SCADD with pathogenic mutation presented 
normal neurological outcome.14) In this study, the patient with 
SCADD did not share several attributes with previously reported 
patients including severe muscular hypotonia, hypoglycemia, and 
developmental delay. However, she had been hospitalized more than 
10 times for gastroenteritis over 22 months. Biochemical markers 
of SCADD include increased urinary EMA and butyrylglycine, and 
increased plasma butyrylcarnitine.3,4,12) While elevated EMA in urine is 
characteristic of SCADD, it is not diagnostic, nor does the level of EMA 
correlate well with the degree of enzymatic defect in the patients.4,8) 
During times of metabolic stress, MSA (the hydrolyzed product 
of isomerization of ethylmalonyl-CoA by methylmalonyl-CoA 
isomerase) may also be excreted in the urine.4,11) Some patients have 
been reported to have low serum or muscle carnitine levels, but this is 
not a consistent finding.4) The patient also showed an increased EMA 
and MSA levels during times of metabolic stress, but normal serum 
carnitine levels on sequential testing in this study. 

Several inactivating variations in the gene encoding SCAD (ACADS; 
OMIM# 606885) have been identified in patients with SCADD.8) The 
ACADS gene is located on chromosome 12q22 and is approximately 
13 kb of length with 10 exons and 1,236 nucleotides of coding 
sequence.4,9) Primary SCADD can result from multiple mutations or 
two common coding polymorphisms that have been described in the 
ACADS gene.4) Up to 70 different inactivating  ACADS mutations have 
been reported so far.2) Most of these variations are of the missense 
type.4) In addition, two common missense variations, c.511C > T 
(p.Arg171Trp) and c.625G > A (p.Gly209Ser), are present in the normal 
population with allele frequencies of 3-8%  and 22-43%, respectively, 
with variation in frequency among different ethnic groups.7-9,12) 
Thus, as much as 14% of the normal population is homozygous for 
one or compound heterozygous for both of these common ACADS 
gene variations.1,8) It has been suggested that these functional 
polymorphisms, when homozygous or heterozygous with a known 
pathogenic mutation, increase susceptibility to symptoms in certain 
environmental situations, such as fever.9) It has been demonstrated 
that homozygosity for one of the polymorphisms is associated with 
an increased incidence of elevated EMA excretion.4) Genetic analysis 
of patients with elevated levels of EMA in the urine revealed that 
approximately 69% were homozygous or compound heterozygous 
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Fig. 1. Urine EMA and MSA levels were shown at baseline and after 
12 months of riboflavin treatment. EMA, ethylmalonoc acid; MSA, 
methylsuccinic acid.
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for these two variants.7) Genotype-phenotype or EMA-phenotype 
excretion correlations, however, have been inconsistent.4,6,15) In 
addition, the phenotypic expression of a given mutation is thought 
to depend on additional genetic or environmental determinants.3) 
Recently, there has been just one report of SCADD by biochemical 
and genetic findings in Korea and sequence analysis of the ACADS 
gene revealed novel homozygous missence mutations, c. 1031A>G 
(p.Glu344Gly) with increased concentration of butylcarnitine and 
urinary excretion of EMA.16) The p.Leu39Ile and p.Glu288Lys, novel 
variants identified in this study, are expected to cause functional 
abnormalities by SIFT (Sorts Intolerant From Tolerant amino acid 
substitutions; <0.05 is predicted to be deleterious) with value of 0.00 
and 0.04, respectively. Additional functional analysis in vitro might 
help validate these predictions. 

Little firm data exist on the appropriate therapy for SCADD- 
indeed, there is no consensus on the need to treat this disease.4) 
Chronic management of SCADD should be similar to that of other FAO 
disorders, focusing on decreasing catabolic drive as well as providing 
alternative sources of energy.4) During acute crises, intravenous fluids 
with high dextrose concentrations (usually at least 10% to give 8-10 
mg/kg/min of glucose intake) with or without intralipids can be used 
to reverse the catabolic state.4) Preventive measures, if necessary, 
likely include only avoidance of fasting.4) Since FAD is an essential 
cofactor for SCAD function, riboflavin supplementation has been 
suggested as a possible therapy for SCADD due to its potential ability 
to act as a chemical chaperone and stabilize mutant enzymes.4) In 
addition, riboflavin deficiency is a relatively common condition and 
could therefore be a common environmental factor reducing SCAD 
activity in susceptible SCADD individuals, resulting in clinical disease.1) 
In some patients, it was found that riboflavin treatment seemed to 
be beneficial.1) A high dose of riboflavin (10 mg/kg/d, with a maximum 
of 150 mg/d) was thought to be sufficient to obtain the maximal 
attainable FAD levels in patients with SCADD.1) Such a treatment could 
be especially effective in those patients who have a relatively low FAD 
status at baseline.1) Even though the blood FAD level of the patient was 
not tested in this study, high-dose riboflavin treatment for 12 months 
was used due to aggravated biochemical findings; this resulted in a 
decrease in EMA and MSA excretion without side effects. However, 
long-term follow-up of this patient is needed to validate the efficacy 
of riboflavin supplementation. Also, the patient’s natural history 
and genetic background need to be further investigated in order to 
provide appropriate genetic counseling and management. These 
results will provide further evidence of mutational heterogeneity for 
SCADD.
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