DOI QR코드

DOI QR Code

RICCI CURVATURE AND MONOPOLE CLASSES ON 3-MANIFOLDS

  • Sung, Chan-Young (Department of Mathematics and Institute for Mathematical Sciences Konkuk University)
  • Received : 2010.12.24
  • Published : 2012.09.01

Abstract

We prove an $L^2$-estimate of Ricci curvature in terms of harmonic 1-forms on a closed oriented Riemannian 3-manifold admitting a solution of any rescaled Seiberg-Witten equations. We also give a necessary condition to be a monopole class on some special connected sums.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea(NRF)

References

  1. S. Bauer, A stable cohomotopy re nement of Seiberg-Witten invariants. II, Invent. Math. 155 (2004), no. 1, 21-40. https://doi.org/10.1007/s00222-003-0289-4
  2. S. Bauer and M. Furuta, A stable cohomotopy refinement of Seiberg-Witten invariants. I, Invent. Math. 155 (2004), no. 1, 1-19. https://doi.org/10.1007/s00222-003-0288-5
  3. G. Besson, G. Courtois, and S. Gallot, Volume et entropie minimale des espaces localement symetriques, Invent. Math. 103 (1991), no. 2, 417-445. https://doi.org/10.1007/BF01239520
  4. H.-D. Cao and J. Zhou, Equivariant cohomology and wall crossing formula in Seiberg-Witten theory, Math. Res. Lett. 5 (1998), no. 6, 711-721. https://doi.org/10.4310/MRL.1998.v5.n6.a2
  5. M. Gromov and H. B. Lawson, The classification of simply connected manifolds of positive scalar curvature, Ann. of Math. 111 (1980), no. 3, 423-434. https://doi.org/10.2307/1971103
  6. M. Gursky, Four-manifolds with $\delta W^{+}$ = 0 and Einstein constants of the sphere, Math. Ann. 318 (2000), no. 3, 417-431. https://doi.org/10.1007/s002080000130
  7. P. B. Kronheimer and T. S. Mrowka, The genus of embedded surfaces in the projective plane, Math. Res. Lett. 1 (1994), no. 6, 797-808. https://doi.org/10.4310/MRL.1994.v1.n6.a14
  8. H. B. Lawson and M.-L. Michelson, Spin Geometry, Princeton University Press, 1989.
  9. C. LeBrun, Four-manifolds without Einstein metric, Math. Res. Lett. 3 (1996), no. 2, 133-147. https://doi.org/10.4310/MRL.1996.v3.n2.a1
  10. C. LeBrun, Yamabe constants and the perturbed Seiberg-Witten equations, Comm. Anal. Geom. 5 (1997), no. 3, 535-553. https://doi.org/10.4310/CAG.1997.v5.n3.a6
  11. C. LeBrun, Curvature and smooth topology in dimension four, Global analysis and harmonic analysis (Marseille-Luminy, 1999), 179-200, Semin. Congr., 4, Soc. Math. France, Paris, 2000.
  12. C. LeBrun, Ricci curvature, minimal volumes, and Seiberg-Witten theory, Invent. Math. 145 (2001), no. 2, 279-316. https://doi.org/10.1007/s002220100148
  13. C. LeBrun, Einstein metrics, four-manifolds, and differential topology, Surveys in differential geometry, Vol. VIII (Boston, MA, 2002), 235-255, Surv. Differ. Geom., VIII, Int. Press, Somerville, MA, 2003.
  14. J. Lee and T. Parker, The Yamabe problem, Bull. Amer. Math. Soc. 17 (1987), no. 1, 37-91. https://doi.org/10.1090/S0273-0979-1987-15514-5
  15. T. J. Li and A. Liu, General wall crossing formula, Math. Res. Lett. 2 (1995), no. 6, 797-810. https://doi.org/10.4310/MRL.1995.v2.n6.a11
  16. J. Morgan, The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifold, Princeton University Press, 1996.
  17. C. Sung, Surgery, curvature, and minimal volume, Ann. Global Anal. Geom. 26 (2004), no. 3, 209-229. https://doi.org/10.1023/B:AGAG.0000042898.55061.ef
  18. C. Sung, Surgery and equivariant Yamabe invariant, Differential Geom. Appl. 24 (2006), no. 3, 271-287. https://doi.org/10.1016/j.difgeo.2005.09.002
  19. C. Sung, Collapsing and monopole classes of 3-manifolds, J. Geom. Phys. 57 (2007), no. 2, 549-559. https://doi.org/10.1016/j.geomphys.2006.04.006
  20. C. Sung, Surgery, Yamabe invariant, and Seiberg-Witten theory, J. Geom. Phys. 59 (2009), no. 2, 246-255. https://doi.org/10.1016/j.geomphys.2008.11.005
  21. C. Sung, Finite group actions and G-monopole classes on smooth 4-manifolds, arXiv:1108.3875.
  22. C. H. Taubes, The Seiberg-Witten invariants and symplectic forms, Math. Res. Lett. 1 (1994), no. 6, 809-822. https://doi.org/10.4310/MRL.1994.v1.n6.a15

Cited by

  1. $$G$$ -monopole classes, Ricci flow, and Yamabe invariants of 4-manifolds vol.169, pp.1, 2014, https://doi.org/10.1007/s10711-013-9846-1