참고문헌
- Arafa MA, Waly MI, Jriesat S, et al (2011). Dietary and lifestyle characteristics of colorectal cancer in Jordan: a case-control study. Asian Pac J Cancer Prev, 12, 1931-6.
- Chatterjee N, Kalaylioglu Z, Moslehi R, Peters U, et al (2006). Powerful multilocus tests of genetic association in the presence of gene-gene and gene-environment interactions. Am J Hum Genet, 79, 1002-16. https://doi.org/10.1086/509704
- Darbary HK, Dutt SS, Sait SJ, et al (2009). Uniparentalism in sporadic colorectal cancer is independent of imprint status, and coordinate for chromosomes 14 and 18. Cancer Genet Cytogenet, 189, 77-86. https://doi.org/10.1016/j.cancergencyto.2008.10.011
- Elbers CC, van Eijk KR, Franke L, et al (2009). Using genomewide pathway analysis to unravel the etiology of complex diseases. Genet Epidemiol, 33, 419-31. https://doi.org/10.1002/gepi.20395
- Gao Y, Cao Y, Tan A, et al (2010). Glutathione S-transferase M1 polymorphism and sporadic colorectal cancer risk: An updating meta-analysis and HuGE review of 36 case-control studies. Ann Epidemiol, 20, 108-21. https://doi.org/10.1016/j.annepidem.2009.10.003
- Garcia-Martinez C, Lozano M, Herrera F, et al (2008). Global and local real-coded genetic algorithms based on parentcentric crossover operators. Eur J Oper Res, 185, 1088-113. https://doi.org/10.1016/j.ejor.2006.06.043
- Günther F, Wawro N, Bammann K (2009). Neural networks for modeling gene-gene interactions in association studies. BMC Genet, 10:87.
- Hahn LW, Ritchie MD, Moore JH (2003). Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics, 19, 376-82. https://doi.org/10.1093/bioinformatics/btf869
- Hallqvist J, Ahlbom A, Diderichsen F, et al (1996). How to evaluate interaction between causes a review of practices in cardiovascular epidemiology. J Intern Med, 239, 377-82. https://doi.org/10.1046/j.1365-2796.1996.431782000.x
- Hosmer DW, Lemeshow S (1990). Applied logistic regression [M]. London: John Wiley&Sons. 1-23.
- Hosmer DW, Lemeshow S (1992). Confidence interval estimation of interaction. Epidemiology, 3, 452-6. https://doi.org/10.1097/00001648-199209000-00012
- Kooperberg C, Ruczinski I (2005). Identifying interacting SNPs using Monte Carlo logic regression. Genet Epidemiol, 28, 157-70. https://doi.org/10.1002/gepi.20042
- Kooperberg C, Ruczinski I, LeBlanc ML, et al (2001). Sequence analysis using logic regression. Genet Epidemiol, 21, 626-31. https://doi.org/10.1002/gepi.2001.21.s1.s626
- Liddle Andrew R (2007). Information criteria for astrophysical model selection. Monthly Notices of the Royal Astronomical.
- Mitchell HG, Jacques B (2000). Encyclopedia of epidemiologic methods. John Wiley & Sons Ltd.
- Moolgavkar SH, Venzon DJ (1987). General relative risk regression models for epidemiologic studies. Am J Epidemiol, 126, 949-61. https://doi.org/10.1093/oxfordjournals.aje.a114733
- Ottman R (1996). Theoretical epidemiology gene-environment interaction: definitions and study designs. Prev Med, 25, 764-70. https://doi.org/10.1006/pmed.1996.0117
- Reeves SG, Mossman D, Meldrum CJ, et al (2008). The-149C>T SNP within the DDNMT3B gene, is not associated with early disease onset in hereditary non-polyposis colorectal cancer. Cancer Lett, 265, 39-44. https://doi.org/10.1016/j.canlet.2008.02.005
- Rothman KJ (1986). Interactions between causes. In: Modern epidemiology. Boston: Little, Brown: 311-26.
- Rothman KJ (2002). Epidemiology: an introduction [M]. New York: Oxford University Press.
- Roukos DH (2009). Genome-wide association studies and aggressive surgery toward individualized prevention, and improved local control and overall survival for gastric cancer. Ann Surg Oncol, 16, 795-98. https://doi.org/10.1245/s10434-009-0317-8
- Ruczinski I, Kooperberg C, LeBlanc M (2003). Logic regression. J Comput Graph Stat, 12, 475-511. https://doi.org/10.1198/1061860032238
- Tomlinson I, Webb E, Carvajal-Carmona L, et al (2007). A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nat Genet, 39, 984-8. https://doi.org/10.1038/ng2085
- Wong HL, Peters U, Hayes RB, et al (2010). Polymorphisms in the adenomatous polyposis coli (APC) gene and advanced colorectal adenoma risk. Eur J Cancer, 46, 2457-66. https://doi.org/10.1016/j.ejca.2010.04.020
- Wu X, Jin L, Xiong M (2008). Composite measure of linkage disequilibrium for testing interaction between unlinked loci. Eur J Hum Genet, 16, 644-51. https://doi.org/10.1038/sj.ejhg.5202004
- Wu Y, Zhang L, Liu L, et al (2011). A multifactor dimensionality reduction-logistic regression model of gene polymorphisms and an environmental interaction analysis in cancer research. Asian Pac J Cancer Prev, 12, 2887-92.
- Xiong XD, Qiu FE, Fang JH, et al (2009). Association analysis between the Cdc6 G1321A polymorphism and the risk for non-Hodgkin lymphoma and hepatocellular carcinoma. Mutat Res, 662, 10-5. https://doi.org/10.1016/j.mrfmmm.2008.11.014
- Yang H, Zhou Y, Zhou Z, et al (2009). A novel polymorphism rs1329149 of CYP2E1 and a known polymorphism rs671 of ALDH2 of alcohol metabolizing enzymes are associated with colorectal cancer in a southwestern Chinese population. Cancer Epidemiol Biomarkers Prev, 18, 2522-7. https://doi.org/10.1158/1055-9965.EPI-09-0398
- Zhao Y, Deng X, Wang Z, et al (2012). Genetic Polymorphisms of DNA Repair Genes XRCC1 and XRCC3 and Risk of Colorectal Cancer in Chinese Population. Asian Pac J Cancer Prev, 13, 665-9. https://doi.org/10.7314/APJCP.2012.13.2.665
피인용 문헌
- Association between the HSPA1B ±1267A/G Polymorphism and Cancer Risk: a Meta-analysis of 14 Case-Control Studies vol.15, pp.16, 2014, https://doi.org/10.7314/APJCP.2014.15.16.6855
- Importance of Meta-Analysis and Practical Obstacles in Oncological and Epidemiological Studies: Statistics Very Close but Also Far! vol.16, pp.3, 2015, https://doi.org/10.7314/APJCP.2015.16.3.1303
- Building Up a Robust Risk Mathematical Platform to Predict Colorectal Cancer vol.2017, pp.1099-0526, 2017, https://doi.org/10.1155/2017/8917258