DOI QR코드

DOI QR Code

Evaluation of the Neurological Safety of Epidural Milnacipran in Rats

  • Lim, Seung-Mo (Department of Anesthesiology and Pain Medicine, Chung-Ang University College of Medicine) ;
  • Shin, Mee-Ran (Department of Prosthodontics, Dentistry, Hangang Sacred Heart Hospital, Graduated School of Clinical Dentistry, Hallym University) ;
  • Kang, Kyung-Ho (Department of Surgery, Chung-Ang University College of Medicine) ;
  • Kang, Hyun (Department of Anesthesiology and Pain Medicine, Chung-Ang University College of Medicine) ;
  • Nahm, Francis Sahn-Gun (Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital) ;
  • Kim, Baek-Hui (Department of Pathology, Korea University College of Medicine) ;
  • Shin, Hwa-Yong (Department of Anesthesiology and Pain Medicine, Chung-Ang University College of Medicine) ;
  • Lim, Young-Jin (Department of Anesthesiology and Pain Medicine, Seoul National University Hospital) ;
  • Lee, Sang-Chul (Department of Anesthesiology and Pain Medicine, Seoul National University Hospital)
  • Received : 2012.06.28
  • Accepted : 2012.08.03
  • Published : 2012.10.01

Abstract

Background: Milnacipran is a balanced serotonin norepinephrine reuptake inhibitor with minimal side effects and broad safety margin. It acts primarily on the descending inhibitory pain pathway in brain and spinal cord. In many animal studies, intrathecal administration of milnacipran is effective in neuropathic pain management. However, there is no study for the neurological safety of milnacipran when it is administered neuraxially. This study examined the neurotoxicity of epidural milnacipran by observing behavioral and sensory-motor changes with histopathological examinations of spinal cords in rats. Methods: Sixty rats were divided into 3 groups, with each group receiving epidural administration of either 0.3 ml (3 mg) of milnacipran (group M, n = 20), 0.3 ml of 40% alcohol (group A, n = 20), or 0.3 ml of normal saline (group S, n = 20). Results: There were no abnormal changes in the behavioral, sensory-motor, or histopathological findings in all rats of groups M and S over a 3-week observation period, whereas all rats in group A had abnormal changes. Conclusions: Based on these findings, the direct epidural administration of milnacipran in rats did not present any evidence of neurotoxicity in behavioral, sensory-motor and histopathological evaluations.

Keywords

References

  1. Sindrup SH, Jensen TS. Efficacy of pharmacological treatments of neuropathic pain: an update and effect related to mechanism of drug action. Pain 1999; 83: 389-400. https://doi.org/10.1016/S0304-3959(99)00154-2
  2. Walsh TD. Antidepressants in chronic pain. Clin Neuropharmacol 1983; 6: 271-295.
  3. Obata H, Saito S, Koizuka S, Nishikawa K, Goto F. The monoamine-mediated antiallodynic effects of intrathecally administered milnacipran, a serotonin noradrenaline reuptake inhibitor, in a rat model of neuropathic pain. Anesth Analg 2005; 100: 1406-1410. https://doi.org/10.1213/01.ANE.0000149546.97299.A2
  4. Fanton L, Bevalot F, Grait H, Le Meur C, Gaillard Y, Malicier D. Fatal intoxication with milnacipran. J Forensic Leg Med 2008; 15: 388-390. https://doi.org/10.1016/j.jflm.2007.12.006
  5. Ikeda T, Ishida Y, Naono R, Takeda R, Abe H, Nakamura T, et al. Effects of intrathecal administration of newer antidepressants on mechanical allodynia in rat models of neuropathic pain. Neurosci Res 2009; 63: 42-46. https://doi.org/10.1016/j.neures.2008.10.002
  6. Mochizucki D. Serotonin and noradrenaline reuptake inhibitors in animal models of pain. Hum Psychopharmacol 2004; 19 Suppl 1: S15-S19. https://doi.org/10.1002/hup.620
  7. Shin SW, Eisenach JC. Peripheral nerve injury sensitizes the response to visceral distension but not its inhibition by the antidepressant milnacipran. Anesthesiology 2004; 100: 671-675. https://doi.org/10.1097/00000542-200403000-00030
  8. Park SC, Shin SW, Baek SH, Kim HK, Baik SW, Kim KH. The effects of milnacipran on rat pain model. Korean J Anesthesiol 2004; 47: 260-265. https://doi.org/10.4097/kjae.2004.47.2.260
  9. Fairbanks CA. Spinal delivery of analgesics in experimental models of pain and analgesia. Adv Drug Deliv Rev 2003; 55: 1007-1041. https://doi.org/10.1016/S0169-409X(03)00101-7
  10. Yaksh TL, Collins JG. Studies in animals should precede human use of spinally administered drugs. Anesthesiology 1989; 70: 4-6. https://doi.org/10.1097/00000542-198901000-00003
  11. Schug SA, Saunders D, Kurowski I, Paech MJ. Neuraxial drug administration: a review of treatment options for anaesthesia and analgesia. CNS Drugs 2006; 20: 917-933. https://doi.org/10.2165/00023210-200620110-00005
  12. Kim YC, Lim YJ, Lee SC. Spreading pattern of epidurally administered contrast medium in rabbits. Acta Anaesthesiol Scand 1998; 42: 1092-1095. https://doi.org/10.1111/j.1399-6576.1998.tb05382.x
  13. Lim YJ, Sim WS, Kim YC, Lee SC, Choi YL. The neurotoxicity of epidural hyaluronic acid in rabbits: a light and electron microscopic examination. Anesth Analg 2003; 97: 1716-1720. https://doi.org/10.1213/01.ANE.0000087044.16739.5A
  14. Choi SS, Kim YC, Lim YJ, Lee CJ, Lee PB, Lee SC, et al. The neurological safety of epidural gabapentin in rats: a light microscopic examination. Anesth Analg 2005; 101: 1422-1426. https://doi.org/10.1213/01.ANE.0000180197.32577.9B
  15. Hayashi N, Weinstein JN, Meller ST, Lee HM, Spratt KF, Gebhart GF. The effect of epidural injection of betamethasone or bupivacaine in a rat model of lumbar radiculopathy. Spine (Phila Pa 1976) 1998; 23: 877-885. https://doi.org/10.1097/00007632-199804150-00008
  16. Kawakami M, Matsumoto T, Hashizume H, Kuribayashi K, Tamaki T. Epidural injection of cyclooxygenase-2 inhibitor attenuates pain-related behavior following application of nucleus pulposus to the nerve root in the rat. J Orthop Res 2002; 20: 376-381. https://doi.org/10.1016/S0736-0266(01)00114-0
  17. Lee JR. Evaluation of the neurological safety of epidural pregabalin in rats (dissertation). Seoul: Seoul National Univ., 2008.
  18. Bajrovic F, Sketelj J. Extent of nociceptive dermatomes in adult rats is not primarily maintained by axonal competition. Exp Neurol 1998; 150: 115-121. https://doi.org/10.1006/exnr.1997.6734
  19. Thalhammer JG, Vladimirova M, Bershadsky B, Strichartz GR. Neurologic evaluation of the rat during sciatic nerve block with lidocaine. Anesthesiology 1995; 82: 1013-1025. https://doi.org/10.1097/00000542-199504000-00026
  20. Kawakami M, Weinstein JN, Spratt KF, Chatani K, Traub RJ, Meller ST, et al. Experimental lumbar radiculopathy. Immunohistochemical and quantitative demonstrations of pain induced by lumbar nerve root irritation of the rat. Spine (Phila Pa 1976) 1994; 19: 1780-1794. https://doi.org/10.1097/00007632-199408150-00001
  21. Guevara-Lopez U, Covarrubias-Gomez A, Gutierrez-Acar H, Aldrete JA, Lopez-Munoz FJ, Martinez-Benitez B. Chronic subarachnoid administration of 1-(4chlorobenzoyl)-5methoxy- 2methyl-1H-indole-3 acetic acid (indomethacin): an evaluation of its neurotoxic effects in an animal model. Anesth Analg 2006; 103: 99-102. https://doi.org/10.1213/01.ane.0000221184.63402.24
  22. Madsen JB, Jensen FM, Faber T, Bille-Hansen V. Chronic catheterization of the epidural space in rabbits: a model for behavioural and histopathological studies. Examination of meptazinol neurotoxicity. Acta Anaesthesiol Scand 1993; 37: 307-313. https://doi.org/10.1111/j.1399-6576.1993.tb03720.x
  23. Gurun MS, Leinbach R, Moore L, Lee CS, Owen MD, Eisenach JC. Studies on the safety of glucose and parabencontaining neostigmine for intrathecal administration. Anesth Analg 1997; 85: 317-323.
  24. Hodgson PS, Neal JM, Pollock JE, Liu SS. The neurotoxicity of drugs given intrathecally (spinal). Anesth Analg 1999; 88: 797-809. https://doi.org/10.1213/00000539-199904000-00023
  25. Fazakas J, Toth S, Füle B, Smudla A, Mandli T, Radnai M, et al. Epidural anesthesia? No of course. Transplant Proc 2008; 40: 1216-1217. https://doi.org/10.1016/j.transproceed.2008.03.109
  26. Governale LS, Fein N, Logsdon J, Black PM. Techniques and complications of external lumbar drainage for normal pressure hydrocephalus. Neurosurgery 2008; 63: 379-384. https://doi.org/10.1227/01.NEU.0000335264.59098.E8
  27. Hassenbusch SJ, Portenoy RK, Cousins M, Buchser E, Deer TR, Du Pen SL, et al. Polyanalgesic Consensus Conference 2003: an update on the management of pain by intraspinal drug delivery-- report of an expert panel. J Pain Symptom Manage 2004; 27: 540-563. https://doi.org/10.1016/j.jpainsymman.2004.03.001
  28. Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J 2008; 22: 659-661. https://doi.org/10.1096/fj.07-9574LSF
  29. Rocco AG, Chan V, Iacobo C. An algorithm for the treatment of pain in advanced cancer. Hosp J 1989; 5: 93-103. https://doi.org/10.1080/0742-969X.1989.11882657
  30. Hogan QH, Stadnicka A, Stekiel TA, Bosnjak ZJ, Kampine JP. Mechanism of mesenteric venodilatation after epidural lidocaine in rabbits. Anesthesiology 1994; 81: 939-945. https://doi.org/10.1097/00000542-199410000-00020
  31. Svensson BA, Alari L, Post C. Repeated intrathecal injections of dezocine produce antinociception without evidence for neurotoxicity in the rat: a study of morphometric evaluation of spinal cord histology. Anesth Analg 1992; 75: 392-399.
  32. Norton S. Is behavior or morphology a more sensitive indicator of central nervous system toxicity? Environ Health Perspect 1978; 26: 21-27. https://doi.org/10.1289/ehp.782621
  33. Singler RC. Alcohol neurolysis of sciatic and femoral nerves. Anesth Analg 1981; 60: 532-533.
  34. Porges P, Zdrahal F. Intrathecal alcohol neurolysis of the lower sacral roots in inoperable rectal cancer. Anaesthesist 1985; 34: 627-629.
  35. Pelissier J, Viel E, Enjalbert M, Kotzki N, Eledjam JJ. Chemical neurolysis using alcohol (alcoholization) in the treatment of spasticity in the hemiplegic. Cah Anesthesiol 1993; 41: 139-143.
  36. Gallager HS, Yonezawa T, Hay RC, Derrick WS. Subarachnoid alcohol block. II. Histologic changes in the central nervous system. Am J Pathol 1961; 38: 679-693.
  37. Matsuki M, Kato Y, Ichiyanagi K. Progressive changes in the concentration of ethyl alcohol in the human and canine subrachnoid spaces. Anesthesiology 1972; 36: 617-621. https://doi.org/10.1097/00000542-197206000-00018