DOI QR코드

DOI QR Code

Study on Formation Mechanism of Iron Oxide Nanoparticles

산화철 나노입자의 형성 메커니즘에 대한 연구

  • Kim, Dong-Young (Department of Physics, Andong National University) ;
  • Yoon, Seok-Soo (Department of Physics, Andong National University) ;
  • Takahashi, Migaku (Department of Materials Science and Engineering, Chungnam National University, New Industry Creation Hatchery Center, Tohoku University)
  • Received : 2012.10.05
  • Accepted : 2012.10.19
  • Published : 2012.10.31

Abstract

In order to analyze the formation mechanism of iron oxide nanoparticles, we measured the heat flow of $Fe(OL)_3$ precursor with temperature, and TEM images and AC susceptibility of aliquots samples sequentially taken from the reaction solution, respectively. The thermal decomposition of two OL-chain from $Fe(OL)_3$ produced the Fe-OL monomer, which were contributed to the formation of iron oxide nanoparticles. In the initial stage of nanoparticles formation, the small iron oxide nanoparticles had ${\gamma}-Fe_2O_3$ structure. However, as the iron oxide nanoparticles were rapidly growth, the iron oxide nanoparticles showed ${\gamma}-Fe_2O_3$-FeO core-shell structure which the FeO layer was formed on the surface of ${\gamma}-Fe_2O_3$ nanoparticles by insufficient oxygen supply from the reaction solution. These nanoparticles were transformed to $Fe_3O_4$ structure by oxidation during long aging time at high temperature. Finally, the $Fe_3O_4$ nanoparticles with high saturation magnetization and stable in the air could be easily synthesized by the thermal decomposition method.

본 연구에서는 $Fe(OL)_3$ 전구체가 고온에서 열분해 한 후 산화철 나노입자를 형성하는 메커니즘을 분석하기 위하여 전구체의 온도에 따른 열유속을 측정하였으며, 반응 과정에서 순차적으로 채취한 반응 원액의 TEM 및 교류 자화율을 측정 하였다. $Fe(OL)_3$는 고온에서 OL-chain 두 개가 순차적으로 분리되어 Fe-OL 단량체(monomer)가 되고, 이들이 산화철 나노입자 형성에 기여하게 된다. 또한 산화철 나노입자는 초기 성장 과정에서 ${\gamma}-Fe_2O_3$ 구조를 갖는 나노입자를 형성하지만, 나노 입자들이 급격히 성장할 때는 공급되는 산소량의 부족으로 인하여 FeO가 형성되어 ${\gamma}-Fe_2O_3$-FeO의 core-shell 구조를 갖는 나노입자들이 합성된다. 이러한 산화철 나노입자들을 고온에서 장시간 유지시키면 부족한 산소를 점차적으로 보충하여 $Fe_3O_4$ 구조를 갖는 나노입자로 변화한다. 따라서 포화자화량이 높고 공기 중에서 안정한 $Fe_3O_4$ 나노입자는 고온 열분해법을 이용하여 쉽게 제조할 수 있다.

Keywords

References

  1. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. V. Elst, and R. N. Muller, Chem. Rev. 108, 2064 (2008). https://doi.org/10.1021/cr068445e
  2. J. Park, K. An, Y. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park, N.-M. Hwang, and T. Hyeon, Nature Materials 3, 891 (2004). https://doi.org/10.1038/nmat1251
  3. J. Park, E. Lee, N.-M. Hwang, M. Kang, S. C. Kim, Y. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park, and T. Hyeon., Angew. Chem. Int. Ed. 44, 2872 (2005). https://doi.org/10.1002/anie.200461665
  4. L. M. Bronstein, J. E. Atkinson, A. G. Malyutin, F. Kidwai, B. D. Stein, D. G. Morgan, J. M. Perry, and J. A. Karty, Langmuir 27, 3044 (2011). https://doi.org/10.1021/la104686d
  5. D. Kim, N. Lee, M. Park, B. H. Kim, K. An, and T. Hyeon, J. Am. Chem. Soc. 131, 454 (2009). https://doi.org/10.1021/ja8086906
  6. H. T. Hai, H. T. Yang, H. Kura, D. Hasegawa, Y. Ogata, M. Takahashi, and T. Ogawa, J. Colloid Interf. Sci. 346, 37 (2010). https://doi.org/10.1016/j.jcis.2010.02.025
  7. S.-J. Park, S. Kim, S. Lee, Z. G. Khim, K. Char, and T. Hyeon, J. Am. Chem. Soc. 122, 8581 (2000). https://doi.org/10.1021/ja001628c
  8. H. Sun, B. Chen, X. Jiao, Z. Jiang, Z. Qin, and D. Chen, J. Phys. Chem. C 116, 5476 (2012). https://doi.org/10.1021/jp211986a
  9. S. G. Kwon, Y. Piao, J. Park, S. Angappane, Y. Jo, N.-M. Hwang, J.-G. Park, and T. Hyeon, J. Am. Chem. Soc. 129, 12571 (2007). https://doi.org/10.1021/ja074633q
  10. S. G. Kwon and T. Hyeon, Small 7, 2685 (2011). https://doi.org/10.1002/smll.201002022
  11. L. M. Bronstein, X. Huang, J. Retrum, A. Schmucker, M. Pink, B. D. Stein and B. Dragnea, Chem. Mater. 19, 3624 (2007). https://doi.org/10.1021/cm062948j
  12. S. Palchoudhury, W. An, Y. Xu, Y. Qin, Z. Zhang, N. Chopra, R. A. Holler, C. H. Turner, and Y. Bao, Nano Lett. 11, 1141 (2011). https://doi.org/10.1021/nl200136j
  13. Gerald F. Dionne, IEEE Trans. Magn. 39, 3121 (2003). https://doi.org/10.1109/TMAG.2003.816026
  14. M. Fang, V. Strom, R. T. Olsson, L. Belova, and K. V. Rao, Appl. Phys. Lett. 99, 222501 (2011). https://doi.org/10.1063/1.3662965
  15. M. A. Morales, T. K. Jain, V. Labhasetwar, and D. L. Leslie-Pelecky, J. Appl. Phys. 97, 10Q905 (2005). https://doi.org/10.1063/1.1850855
  16. http://en.wikipedia.org/wiki/Spontaneous_magnetization.