DOI QR코드

DOI QR Code

Oleanane-triterpenoids from Panax stipuleanatus inhibit NF-κB

  • Liang, Chun (College of Pharmacy, Chungnam National University) ;
  • Ding, Yan (Institute of Chemistry and Applications of Plant Resources, Dalian Polytechnic University) ;
  • Song, Seok Bean (College of Pharmacy, Chungnam National University) ;
  • Kim, Jeong Ah (College of Pharmacy, Kyungpook National University) ;
  • Nguyen, Manh Cuong (Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology) ;
  • Ma, Jin Yeul (Herbal Medicine Improvement Research Center, Korea Institute of Oriental Medicine) ;
  • Kim, Young Ho (College of Pharmacy, Chungnam National University)
  • Received : 2012.05.21
  • Accepted : 2012.09.07
  • Published : 2013.01.15

Abstract

In continuation of our research to find biological components from Panax stipuleanatus, four oleanane-type triterpenes (12 to 15) were isolated successively. Fifteen oleanane-type saponins (1 to 15) were evaluated for nuclear factor (NF)-${\kappa}B$ activity using a luciferase reporter gene assay in HepG2 cells. Compounds 6 to 11 inhibited NF-${\kappa}B$, with $IC_{50}$ values between 3.1 to 18.9 ${\mu}M$. The effects on inducible nitric oxide synthase and cyclooxygenase-2 by compounds 8, 10, and 11 were also examined using reverse transcription-polymerase chain reaction. Three compounds (8, 10, and 11) inhibited NF-${\kappa}B$ activity by reducing the concentration of inflammatory factors in HepG2 cells.

Keywords

References

  1. Tak PP, Firestein GS. NF-kappaB: a key role in inflammatory diseases. J Clin Invest 2001;107:7-11. https://doi.org/10.1172/JCI11830
  2. Shen T, Lee JH, Park MH, Lee YG, Rho HS, Kwak YS, Rhee MH, Park YC, Cho JY. Ginsenoside Rp1, a ginsenoside derivative, blocks promoter activation of iNOS and COX-2 genes by suppression of an $IKK \beta$-mediated NF-$\kappa B$ pathway in HEK293 cells. J Ginseng Res 2011;35:200-208. https://doi.org/10.5142/jgr.2011.35.2.200
  3. Ariga A, Namekawa J, Matsumoto N, Inoue J, Umezawa K. Inhibition of tumor necrosis factor-alpha -induced nuclear translocation and activation of NF-kappa B by dehydroxymethylepoxyquinomicin. J Biol Chem 2002; 277:24625-24630. https://doi.org/10.1074/jbc.M112063200
  4. Prigent M, Barlat I, Langen H, Dargemont C. IkappaBalpha and IkappaBalpha /NF-kappa B complexes are retained in the cytoplasm through interaction with a novel partner, RasGAP SH3-binding protein2. J Biol Chem 2000;275:36441-36449. https://doi.org/10.1074/jbc.M004751200
  5. Baldwin AS. Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. J Clin Invest 2001;107:241-246. https://doi.org/10.1172/JCI11991
  6. Rios JL, Recio MC, Manez S, Giner RM. Natural triterpenoids as anti-inflammatory agents. Stud Nat Prod Chem 2000;22:93-143. https://doi.org/10.1016/S1572-5995(00)80024-1
  7. Zou K, Zhu S, Komatsu K. Analysis of saponins of Panax stipuleanatus by using HPLC and APIMS/MS techniques. J Univ Hydraul Electr Eng 2002;24:355-357.
  8. Yang C, Jiang Z, Zhou J, Kasai R, Tanaka O. Two new oleanolic acid-type saponins from Panax stipuleanatus. Acta Bot Yunnanica 1985;7:103-108.
  9. Liang C, Ding Y, Nguyen HT, Kim JA, Boo HJ, Kang HK, Nguyen MC, Kim YH. Oleanane-type triterpenoids from Panax stipuleanatus and their anticancer activities. Bioorg Med Chem Lett 2010;20:7110-7115. https://doi.org/10.1016/j.bmcl.2010.09.074
  10. Nie RL, Morita T, Kasai R, Zhou J, Wu CY, Tanaka O. Saponins from Chinese medicinal plants. (I). Isolation and structures of hemslosides. Planta Med 1984;50:322-327. https://doi.org/10.1055/s-2007-969721
  11. Yoshikawa M, Murakami T, Harada E, Murakami N, Yamahara J, Matsuda H. Bioactive saponins and glycosides. VII. On the hypoglycemic principles from the root cortex of Aralia elata Seem.: structure related hypoglycemic activity of oleanolic acid oligoglycoside. Chem Pharm Bull (Tokyo) 1996;44:1923-1927. https://doi.org/10.1248/cpb.44.1923
  12. Jiang YT, Xu SX, Gu XH, Ren L, Chen YJ, Yao XS, Miao ZC. Studies on the chemical constituents from Aralia elata. Yao Xue Xue Bao 1992;27:528-532.
  13. Paul AG. NF-kB: a novel therapeutic target for cancer. Eukaryon 2005;1:4-5.
  14. Song SB, Tung NH, Quang TH, Ngan NT, Kim KE, Kim YH. Inhibition of TNF-$\alpha$-mediated NF- $\kappa B$ transcriptional activity in HepG2 cells by dammarane-type saponins from Panax ginseng leaves. J Ginseng Res 2012;36:146-152. https://doi.org/10.5142/jgr.2012.36.2.146
  15. Suh SJ, Jin UH, Kim KW, Son JK, Lee SH, Son KH, Chang HW, Lee YC, Kim CH. Triterpenoid saponin, oleanolic acid 3-O-beta-d-glucopyranosyl(1-->3)-alpha-l-rhamnopyranosyl(1-->2)-alpha-l-arabinopy ranoside (OA) from Aralia elata inhibits LPS-induced nitric oxide production by down-regulated NF-kappaB in raw264.7 cells. Arch Biochem Biophys 2007;467:227-233. https://doi.org/10.1016/j.abb.2007.08.025
  16. Lee JH, Ha YW, Jeong CS, Kim YS, Park Y. Isolation and tandem mass fragmentations of an anti-inflammatory compound from Aralia elata. Arch Pharm Res 2009; 32:831-840. https://doi.org/10.1007/s12272-009-1603-5
  17. Lee EB, Kim OJ, Kang SS, Jeong C. Araloside A, an antiulcer constituent from the root bark of Aralia elata. Biol Pharm Bull 2005;28:523-526. https://doi.org/10.1248/bpb.28.523
  18. Chen Y, Yang L, Lee TJ. Oroxylin A inhibition of lipopolysaccharide-induced iNOS and COX-2 gene expression via suppression of nuclear factor-kappaB activation. Biochem Pharmacol 2000;59:1445-1457. https://doi.org/10.1016/S0006-2952(00)00255-0
  19. Roman-Blas JA, Jimenez SA. NF-kappaB as a potential therapeutic target in osteoarthritis and rheumatoid arthritis. Osteoarthritis Cartilage 2006;14:839-848. https://doi.org/10.1016/j.joca.2006.04.008
  20. Suh N, Honda T, Finlay HJ, Barchowsky A, Williams C, Benoit NE, Xie QW, Nathan C, Gribble GW, Sporn MB. Novel triterpenoids suppress inducible nitric oxide synthase (iNOS) and inducible cyclooxygenase (COX-2) in mouse macrophages. Cancer Res 1998;58:717-723.

Cited by

  1. IRAK1/4-Targeted Anti-Inflammatory Action of Caffeic Acid vol.2013, pp.1466-1861, 2013, https://doi.org/10.1155/2013/518183
  2. Antimicrobial Activity of Oleanolic and Ursolic Acids: An Update vol.2015, pp.1741-4288, 2015, https://doi.org/10.1155/2015/620472
  3. Oleanolic acid derivatives induce apoptosis in human leukemia K562 cell involved in inhibition of both Akt1 translocation and pAkt1 expression vol.67, pp.5, 2015, https://doi.org/10.1007/s10616-014-9722-3
  4. and Their Anti-Inflammatory Activity vol.25, pp.2, 2017, https://doi.org/10.4062/biomolther.2016.063
  5. Heptadeca-8-En-4,6-Diyne-3,10-Diol – A New Cytotoxic Polyacetylene from Vietnamese Panax stipuleanatus vol.54, pp.1, 2018, https://doi.org/10.1007/s10600-018-2280-8
  6. Transcriptome analysis of Panax zingiberensis identifies genes encoding oleanolic acid glucuronosyltransferase involved in the biosynthesis of oleanane-type ginsenosides pp.1432-2048, 2019, https://doi.org/10.1007/s00425-018-2995-6
  7. AP-1-Targeting Anti-Inflammatory Activity of the Methanolic Extract of Persicaria chinensis vol.2015, pp.None, 2013, https://doi.org/10.1155/2015/608126
  8. MAPK/AP-1-Targeted Anti-Inflammatory Activities of Xanthium strumarium vol.44, pp.6, 2013, https://doi.org/10.1142/s0192415x16500622
  9. Zinc and iron complexes of oleanolic acid, (OA) attenuate allergic airway inflammation in rats vol.27, pp.6, 2019, https://doi.org/10.1007/s10787-019-00597-2