DOI QR코드

DOI QR Code

Optical Properties of ZnO-ZnMgO Quantum Wells Grown by Atomic Layer Deposition Technique

원자층 증착법으로 성장한 ZnO-ZnMgO 양자우물의 광전이 특성

  • Shin, Y.H. (Institute of Nanosensors and Biotechnology and Department of Applied Physics, Dankook University) ;
  • Kim, Yongmin (Institute of Nanosensors and Biotechnology and Department of Applied Physics, Dankook University)
  • 신용호 (단국대학교 나노센서 바이오테크놀로지 연구소 & 응용물리학과) ;
  • 김용민 (단국대학교 나노센서 바이오테크놀로지 연구소 & 응용물리학과)
  • Received : 2012.10.30
  • Accepted : 2012.12.20
  • Published : 2013.01.30

Abstract

We fabricated ZnO-ZnMgO single quantum well (SQW) samples having different well-widths by using the atomic layer deposition technique. The QW samples exhibit different optical transition behaviors with different QW widths. We confirm that when the well-width of 1.5 nm does not have a confined quantum energy level due to the Mg diffusion into the well caused by after-thermal treatment whereas the QWs wider than 1.5 nm show optical transitions between the confined energy levels.

원자층 증착법을 이용하여 서로 다른 양자우물 폭을 갖는 ZnO-ZnMgO 양자우물들을 제작하였다. 제작된 시료들은 양자우물 폭에 따라 서로 다른 광전이 특성을 나타내는데 우물 폭이 1.5 nm인 시료의 경우 후 열처리에 따른 Mg의 확산에 따라 양자화된 에너지 준위가 형성되지 않았고 이보다 더 넓은 폭을 갖는 시료들의 경우 양자화된 준위의 광전이를 보임을 확인하였다.

Keywords

References

  1. L. Ma, Optical Studies of GaAs/AlGaAs Coupled Double Quantum Wells (ph. D. Dissertation, Northeastern University, Boston, USA, 1992).
  2. G. W. She, X. H. Zhang, W. S. Shi, X. Fan, J. C. Chang, C. S. Lee, S. T. Lee, and C. H. Liu, Appl. Phys. Lett. 92, 053111 (2008). https://doi.org/10.1063/1.2842386
  3. L. Schmidt-Mende and J. L. MacManus-Driscoll, Materials Today 10, 40 (2007).
  4. R. Chen, G. Z. Xing, J. Gao, Z. Zhang, T. Wu, and H. D. Sun, Appl. Phys. Lett. 95, 061908 (2009). https://doi.org/10.1063/1.3205122
  5. U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doan, V. Avrutin, S.-J. Cho, and H. Morkoc, J. Appl. Phys. 98, 041301 (2005). https://doi.org/10.1063/1.1992666
  6. A. Ohtomo, M. Kawasaki, I. Ohkubo, H. Koinuma, T. Yasuda, and Y. Segawa, Appl. Phys. Lett. 75, 980 (1999). https://doi.org/10.1063/1.124573
  7. S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, T. Venkatesan, and H. Shen, Appl. Phys. Lett. 80, 1529 (2002). https://doi.org/10.1063/1.1456266
  8. Th. Gruber, C. Kirchner, R. Kling, F. Reuss, and A. Waag, Appl. Phys. Lett. 84, 5359 (2004). https://doi.org/10.1063/1.1767273
  9. Y. R. Ryu, T. S. Lee, J. A. Lubguban, A. B. Corman, H. W. White, J. H. Leem, M. S. Han, Y. S. Park, C. J. Youn, and W. J. Kim, Appl. Phys. Lett. 88, 052103 (2006). https://doi.org/10.1063/1.2168040
  10. Y. Ryu1, T. S. Lee, J. A. Lubguban, H. W. White, B. J. Kim, Y. S. Park, and C. J. Youn, Appl. Phys. Lett. 88, 241108 (2006). https://doi.org/10.1063/1.2210452
  11. T. Makino, C. H. Chia, Nguen T. Tuan, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, Appl. Phys. Lett. 77, 1632 (2000). https://doi.org/10.1063/1.1308540
  12. D. W. Ma, Z. Z. Ye, and L. L. Chen, Phys. Stat. Sol. (a), 201, 2929 (2004). https://doi.org/10.1002/pssa.200306857
  13. K. Sakurai, T. Takagi, T. Kubo, D. Kajita, T. Tanabe, H. Takasu, S. Fujita, and S. Fujita, J. Crystal Growth 237, 514 (2002). https://doi.org/10.1016/S0022-0248(01)01954-6
  14. O. Bamiduro, H. Mustafa, R. Mundle, R. B. Konda, and A. K. Pradhan, Appl. Phys. Lett. 90, 252108 (2007). https://doi.org/10.1063/1.2749836
  15. Y. H. Shin and Y. Kim, J. Korean Phys. Soc. 61, 594 (2012). https://doi.org/10.3938/jkps.61.594