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BCI 시스템의 성능 개선을 위한 병렬 모델 특징 추출

Parallel Model Feature Extraction to Improve
Performance of a BCI System
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Abstract: It is well knowns that based on the CSP (Common Spatial Pattern) algorithm, the linear projection of an EEG 
(Electroencephalography) signal can be made to spaces that optimize the discriminant between two patterns. Sharing 
disadvantages from linear time invariant systems, CSP suffers from the non-stationary nature of EEGs causing the performance 
of the classification in a BCI (Brain-Computer Interface) system to drop significantly when comparing the training data and test 
data. The author has suggested a simple idea based on the parallel model of CSP filters to improve the performance of BCI 
systems. The model was tested with a simple CSP algorithm (without any elaborate regularizing methods) and a perceptron 
learning algorithm as a classifier to determine the improvement of the system. The simulation showed that the parallel model 
could improve classification performance by over 10% compared to conventional CSP methods.
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I. INTRODUCTION
By attaching multiple electrodes on the head of human, 

measuring electrical potential from those electrodes keep 
changing and create the pattern that nowadays technology 
could find and identify those pattern and regard them as 
intentions of human to control wheelchair, robot or even 
surfing the web. These are the key point of brain-computer 
interface technology based on EEG (electroencephalography) 
signal [1][7]. 

This technology benefit to specially to patient who 
suffers from neurological disease such as ALS 
(Amyotrophic Lateral Sclerosis), spin cord injury, stroke and 
other case like condition impairment. Using machine 
learning algorithm, pattern could be identified and new 
coming EEG signal could be decided to one of the library 
of pattern from user intention and make it to control output 
application that help for those patient. 

But, understand those pattern is not that easy. 
Researchers, nowadays, struggle in find new way to identify 
people intention using those EEG signals in reliable system 
and could be in realtime[8]. 
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에서 지원하여 연구하였음.

The famous method using in current BCI based EEG is 
called common spatial pattern. It is a spatial filtering 
technique that takes advantage of time-invariant 
transformation of an EEG signal into the same spatial- 
temporal space with constraining in optimizes the 
discriminant between two states of EEG signal patterns [2]. 

As other methods of time-invariant transformation 
technique, CSP algorithm could optimize it performance if 
only if the input signal is stationary by nature. In 
probabilistic sense, CSP algorithm bases on the estimated 
variables by assuming that those estimate variables are 
unchanged by any circumstance. In contrast to those 
assumption, natural characteristic of EEG signal is 
non-stationary sources. The characteristic of distribution 
density function of an EEG signal keep changing from 
time to time, session to session, between one subject to 
another. This problem cause the stationary model of EEG 
to performance poorly especially during the testing set 
were applied to estimate system performance. 

To handle this problem, some method like RCSP 
(Regularize Common Spatial Pattern) were introduced by 
adding the panelty term to the objective function of CSP 
or in the estimate covariance term of CSP algorithm. By 
adding the panelty term, a CSP model with more 
constraint was created. Those constrains try to extract, 
within constraint information, to over come the sensitvity 
of CSP to noise and overfitting problem and specially to 
non-stationary character of CSP. In [3], authors had 
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그림 1. 고유값의 차수 변화에 따른 계획된 뇌파 전극의 수.
Fig. 1. Arranged electrodes in the descending order of its 

eigenvalue.

unified the theory over the RCSP algorithm and proposed 
news fours RCSP algorithm. The simulation using 17 data 
sets showed the improvement over the classification 
accuracy rate and also enable performed effectively for 
subject-subejct transfer problem. Another use of regularize 
CSP algorithm is to solve the problem of non-stationary 
problem directly by regularize CSP towards stationary 
subspace and showed it could increase the classification 
accuracy of classifier. It is also enable for subjects that 
hardly control a BCI system to do use this system better 
than traditional CSP algorithm. 

In this paper, authors tackled the problem of 
non-stationary EEG model by different mean. Using the 
subspace model of parallel CSPs, the non-stationary source 
of EEG could be suppressed, and performance of classifier 
could take benefit from this solution. By doing so, it 
leads to problem of model selection of optimal 
sub-parallel space and the specific number of spatial 
information of output of each sub-space as we increased 
number of features. The detail of method will introduce in 
third part of paper. 

II. RELATED WORKS
1. CSP (Common Spatial Pattern)

CSP is a orthogonal transformation of a segment of 
EEG signal with constraint of maximizing the discriminant 
of spatial information (energy of electrodes) between two 
patterns for instance: the imagination of right hand and 

right foot movement. By letting ∈  ×   is the 
segment of EEG signal with of C electrodes and T time 
sample that is already filtered and centering. The next 
step of CSP algorithm is to calculate the covariance 
matrix as in (1). 

    
 

∈ 


   (1)

Where  is set of trial belongs to pattern    

corresponds to imagination of right hand and    
corresponds to imagination of right foot. Then the 
objective function of CSP can be taken as in (2), where 
  is in (3). 

argmax (2)

 

 (3)

Where      is the discriminant activity 

EEG of pattern and and     is the 

common activity of EEG patterns. As notice, 
   , for any arbitrary value k. This means 
that we could scale the value if W to any value without 

changing value of discriminant function  . By letting 

  , the maximization of objective function in (3) 

could be regard as maximizing problem with constraint. 

argmax

    
(4)

Using Lagrange’s multiplier technique, the maximizing 
problem can be done as in (5) and (6), where  is 
Lagrange multiplier coefficient and need to be found. 

argmax (5)

   (6)

The quadratic form of (6) makes it easy to find the 
solution of as   is maximum when partial 
differential of   respects to  is equal to zero. 
Then solution, the value of  can be found as: 

   (7) 

Here, the solution can be interprets as generalize 
eigenvalues and eigenvectors decomposition of matrix  

and .     is matrix where its column vector 

is eigenvectors  corresponding to eigenvalue ∈.

In the spatial filtering sense, CSP algorithm could 
increase the performance of classifier by keeping only the 
most informative spatial information ones and reject the 
lesser information. By reducing the spatial information 
from total number of channel of C to  ≤  , the 
effectiveness of feature group could be enhanced, so 
increasing performance of classifier or at lease keeping the 
same level of performance as too many feature could lead 
to curse of dimension problem. As the spatial filtering 
concept, CSP acts as the transformation of an EEG signal

 ∈  ×  to ∈  ×  , where  ≤  . 

   (8)
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Where ∈  ×  obtains by concatenating  number 
eigenvector   from the pool of eigenvectors  . 

In [1], authors suggested by selecting 6 out of total 
eigenvectors where the first 3 are eigenvectors that 
correspond to 3 first largest eigenvalues that arranged in 
descending order as demonstrated in Fig. 1 and other 3 
have the smallest eigenvalues. 

In this paper, author used the model selection to 
determine number  of spatial output. In order to select 
author proposed the algorithm bellow, where 
   is arranging in the descending order of it 

eigenvalues    . 

1. Initial: 

-    set of selected eigenvectors
-    ; pool eigenvectors

2. For   

- If  is odd, then   , else 

   . 

- Add   to 
- Remove  from 

- Calculate model fitness using 
3. Select the best model.

Feature extracts by CSP algorithm can be calculated 
using (9), where log(.) is logarithm operator and   is 
variance of filtered signal Y in time sample dimension. 

  log (9)

2. PLA (Perceptron Learning Algorithm)

The simplicity and with non pre-assumption of feature 
probabilistic density function of PLA makes it simple and 
easy to use as the classifier in this paper. PLA with 
linear model and gradient descending rule for updating 
weight classifier for of EEG could use features extracted 
using equation (9). The linear model of PLA takes the 
simple form as in (10), where   is feature vector with 
   and   is weight vector with  is called bias. 

Function   is a step operator defined as in equation 
(11). The target value (+1) can be defined as imagination 
of right hand movement and (-1) is imagination of right 
foot movement. 

    (10)

     ≥ 
   

(11)

The convergences of PLA can be observed through 
estimation over error of classified by PLA defined as in 
(12), where   is pair of training feature and training 

target class (∈).  is set of miss 

classification samples.  denotes size of set . Using 
partial deferential of   respect to  , the gradient 
value of   can be found as in (13). 

 
 

∈

 (12)

 
 

∈

 (13)

In case of feature space is not linear separable, PLA 
would not find the convergences value (  ). To 
avoid such scenario, PLA with pocket algorithm could 
help PLA to accept certain value of error even though 
PLA could not converge. The updating rule of PLA using 
gradient descending and pocket algorithm is given bellow, 
where  is learning rate parameter for PLA. 

1. Initiate:         
2. For t = 0, 1, ..., max , do the following: 

- Compute gradient: 

- Update weight:    

- Compute Error rate: 

- If    , then set:

    . 
- Iterate next step:   

3. Return 

III. PARALLEL MODEL OF CSP 
1. Parallel model

In this paper, we investigated two model of parallel 
temporal subspace models as showing in Fig. 2. Both 
parallel models undergoes the same preprocessing method: 
band pass filtering and sub-segmenting of filtered EEG. 
Band pass filter is designed with IIR filter using 
windowing technique. Filtering window is practical 
Hamming window of 1 second length. Pass band 
frequency range is selecting at 7-30Hz which is the most 
active frequency rhythm related to motor movement and 
imagination of movement [5]. Subject specific frequency 
band was selecting in this paper as frequency range at 
7-30Hz has the generalization sense to all BCI subjects. 

Sub-segment EEG, then, is created using rectangular 
window of size     with overlapping size from each 
window to another at . To find the fittest value of 
, it values is selecting from 0.1s to 1s with 0.1s 
increasing step. At value    , it means that all 
subspace windows are not overlapping each other at all. 

In voting classifier parallel model, Fig. 2(a), EEG 
signal of N subspace are filtered with different spatial 
filter using CSP method and then extracted features using 
equation (9) are classified with N different PLAs 
classifiers, where N is number of sub-segment EEG. The 
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(a) (b) (c)

그림 2. 제안한 병렬 subspace 모델들. (a) CSPs와 PLAs(PCSP-a)
의 병렬모델 (b) PCSP-b1의 특징 추출없이 단일 분류기

를 이용한 CSPs의 병렬모델, (c) 특징 추출방법을 이용

한 단일 분류기를 CSPs의 병렬모델.
Fig. 2. Proposed parallel subspace models. (a) is parallel in both 

CSPs and classifier PLAs (PCSP-a). (b) is parallel model 
of CSPs with single classifier without feature selection 
method (PCSP-b1). (c) is parallel model of CSPs with 
single classifier with feature selection method (PCSP-b2).

final result could be obtained through voting the result for 
majority as in (14), where ∈   is the 

result of individual classifier, N is the number of subspace 
and   is a step function as in (11). We called this 
method PLCSP-a. 

  
  



 (14)

For signal classifier model, Fig. 2(b), the feature created 
from N individual CSPs are concatenated into single 
feature vector and then are classified by single PLA. As 
the result, feature classified by single PLA has dimension 
N times larger that classifier in the parallel model. The 
output from PLA is the final result of this model as 
showing in Fig. 2(b-1). Since the feature of this parallel 
mode is large, we integrated feature selection base on 
Fisher score to reduce size of feature created a model as 
in Fig. 2(b-2). Fisher score could be understand as in 

(15), where 
and 

  are mean and standard deviation of 

feature  in class pattern . and  are mean and 

standard deviation of feature   of all class patterns. 

 







 

(15)

 





  (16)

We called parallel model of CSP with single classifier 
without feature selection “PCSP-b1” and a model with 
feature selection is called “PCSP-b2”. 
2. Model selection

In proposed parallel subspace model, there are two 
parameters concerning in optimizing the performance of 
system: number of sub-segment space causing by change 
value of overlapping size     and 
   number of spatial information output from 
CSP algorithm where   is total input number of electrode 
before CSP and     is length of sub-segment window 
size. To obtained the optimal model, best value of  
and  need to be selected from its corresponding set 
based on the fitness value in (17). The coefficients 
         are fitness parameter weights. 

The square on the component in fitness related  and 
 are to ensure the smoothness of fitness function. 
 is Cohen’s coefficient (Kappa coefficient) of 
model with as parameter of  and . Kappa coefficient 
is closely related classification accuracy rate [6]. Kappa 
coefficient can be found using (18), where Pr  is an 
observe agreement probability, Pr is expected 
agreement probability. 

 
    

 ×  × 
 



 × 
 



(17)

Pr
PrPr

(18)

IV. EXPERIMENT AND RESULT
1. Experimental data

EEG signal obtained from BCI competition III. Here we 
analysis for subject independent system using dataset IVa 
of the competition data set. This data set was recorded 
from 5 healthy subjects using visual stimuli with 118 
electrodes EEG equipment. Fig. 3 shows time scheme of 
experiment during recording EEG signal. Each trial 
conducted by indicating visual cue for 3.5s follow by 1 
of 3 motor imageries that subject should perform: left 
hand, right hand and foot. The target cues were 
intermitted by period of random length, 1.75 to 2.25s, in 
which subject could relax [6]. The BCI III data set IVa 
released for public use contain 2 classes (right hand and 
foot). Each subjects have totally 280 trails with sampling 
frequency of 100Hz. 

In this study, 150 trials of total data were randomly 
pick for training and validation, the rest of data were 
treated as test set. With 150 training samples, data were 
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표 1. Cross-validation 집합에서 최적의 피트니스 값을 위한

PCSP-a 방법의 선택된 모델. K는 전극의 수이고, 

는 오버랩 윈도우 사이즈의 크기이다.
Table 1. Selected model of PCSP-a method for the best fitness 

values in cross-validation set. K is number of electrodes, 
 is overlapping size of sub-window parameter.  

Subject K  Kappa Fitness
aa 14 0.7s 0.94 0.66
al 22 0.7s 0.96 0.66
av 31 0.7s 0.84 0.65
aw 7 0.7s 0.97 0.66
ay 13 0.7s 0.95 0.66

표 2. Cross-validation 집합에서 최적의 피트니스 값을 위한

PCSP-b1 방법의 선택된 모델. K는 전극의 수이고, 

는 오버랩 윈도우 사이즈의 크기이다.
Table 2. Selected model of PCSP-b1 method for the best fitness 

values in cross-validation set. K is number of electrodes, 
 is overlapping size of sub-window parameter.

Subject K  Kappa Fitness 
aa 12 0.7s 0.99 0.66
al 7 0.7s 1.00 0.66
av 20 0.7s 0.94 0.66
aw 5 0.7s 1.00 0.66
ay 6 0.7s 1.00 0.66

표 3. Cross-validation 집합에서 최적의 피트니스 값을 위한

PCSP-b2 방법의 선택된 모델. K는 전극의 수이고, 

는 오버랩 윈도우 사이즈의 크기이다.
Table 3. Selected model of PCSP-b2 method for the best fitness 

values in cross-validation set. K is number of electrodes, 
 is overlapping size of sub-window parameter.

Subject K  Kappa Fitness 
aa 10 0.7s 0.87 0.66
al 10 0.7s 0.92 0.65
av 9 0.7s 0.88 0.59
aw 9 0.7s 0.99 0.66
ay 9 0.7s 0.95 0.65

그림 3. 10 fold-cross validation 스키마를 표현. 각각의 블록은 

데이터의 파티션 영역이다. 각각의 영역들은 트레인 모

델과 데이터 사용되어진 unhatched 블록들로 구성된다.
마지막 결과는 모든 folds의 validation 집합의 평균 결과

값이다.
Fig. 3. Schema represent 10 fold-cross validation scheme. Each 

rectangular represent block partitioning of data. For each 
fold, data in unhatched blocks are used to train model and 
data in hatched block is used to validate model. Final result 
is averaging result of in validation set of all folds.  

그림 4. BCI competition III 데이터 셋 IVa의 뇌파 실험 패러다

임 타임라인.
Fig. 4. Time scheme of experiment paradigm of BCI competition 

III data set IVa. 

divided using 10 fold cross-validation as showing in Fig. 
4 and evaluation the fitness function in (17) of each 
model of   using validation data block. With 
   is number of cross validation, the final fitness 
value is the averaging fitness across all fold as in (19), 

where  is the fitness of fold  . The best model to 
select is using maximizing criteria as in (20). The best 
value of  , the, are used in to evaluate the 

performance of test set. 

  
 

  



   (19)

    argmax 
  (20)

The result of each method was repeated 100 times, 
while each time, the training set data were picked by 
random. This random separation and repetition of process 
are to ensure the generalization result of method according 
to the law of large number. The single evaluation using 
with partitioning data set could lead to fault conclusion of 
result. The final result obtained in this paper is the 
averaging of all repetitions 
2. Simulation results

Models selected by proposed methods and CSP method 
are summarized in Table 1-4. In table 1-4, K is number 

of electrodes output of optimal CSP model,  is 
overlapping size of sub-window of parallel subspaces. The 
measurement of performance of model are measured by 
Kappa value in equation (18) and fitness assigned in 
equation (17). Comparing number of electrode required for 
achieve the maximum fitness value in equation (20), all 
proposed parallel models based CSP selected less number 
of electrodes (K) than conventional CSP method. The 
minimum electrode selected by all 3 parallel model are 7, 
5, 9 for PCSP-a, PCSP-b1, PCSP-b2 respectively. While 
for CSP method, the minimum electrodes selected is K = 
25 electrodes. The maximum number of selected electrodes 
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표 4. Cross-validation 집합에서 최적의 피트니스 값을 위한

CSP 방법의 선택된 모델. K는 전극의 수 이다.
Table 4. Selected model of CSP method for the best fitness values 

in cross-validation set. K is number of electrodes. 

Subject K Kappa
aa 47 0.97
al 44 0.88
av 61 0.91
aw 25 0.80
ay 37 0.88

표 5. 3개의 제안한 방법과 CSP 모델의 Kappa 값을 비교한 

표. 가장 큰 kappa 값을 진하게 마크하였다.
Table 5. Comparing Kappa values with test data set of 3 proposed 

methods and conventional model of CSP. The highest 
Kappa value of each subject are marked by bold font. 

Subject PCSP-a PCSP-b1 PCSP-b2 CSP
aa 0.46 0.48 0.23 0.03
al 0.91 0.97 0.95 0.21
av 0.24 0.28 0.15 -0.04
aw 0.65 0.75 0.61 0.12
ay 0.78 0.89 0.88 0.08

표 6. 트레이닝 데이터와 테스팅 데이터의 분류 정확도를 

비교.가장 작은 trade off를 나타낸 항목에 진하게 표시

하였다.
Table 6. Comparing correct classification accuracy trading off 

between training model and testing model. The lowest 
trading off performance (%) are marked by bold font.  

Subject PCSP-a PCSP-b1 PCSP-b2 CSP
aa 26.92 26.15 38.6 42.64
al 4.62 1.54 2.31 32.18
av 39.23 26.92 43.85 51.27
aw 17.69 12.31 19.23 28.05
ay 10.77 5.38 6.15 40.93

그림 5. 제안한 병령 모델들의 분류 성능 비교: PCSP-a, 
PCSP-b1, PCSP-b2, conventional CSP 방법.

Fig. 5. Comparing classification performance of proposed parallel 
models: PCSP-a, PCSP-b1, PCSP-b2, with conventional 
CSP method.

are 31, 20, 10, 61 for PCSP-a, PCSP-b1, PCSP-b2 and 
CSP method respectively. Notice that for PCSP-b2 number 
of selected electrodes of all subject are almost the same. 
For parallel models, parameter for sub-segmenting window 
is the same,     . 

Table 5 shows Kappa values of each methods in test 
data set after applied the selected model (with 
corresponding K and  values). It is clear that parallel 
model with single classifier (PCSP-b1) performs better 
than other method as its Kappa values evaluation are 
higher than other parallel models and CSP method. 
PCSP-b1 also shows its robustness in subject variation 
problem as it still standout over other methods with all 
data from different subject. In classification accuracy 
sense, Fig. 5 shows that PCSP-b1 model achieve accuracy 
98.5% for subject al and improve performance over than 
10% comparing to CSP method. While PCSP-a method 
stands in second place of best classification performance. 

In common sense, there are always trading off between 
training model and testing model as the testing 
performance never bound outside performance in training 
model. Measuring this value could help us know that 
while method has a good generalization using the training 
data than others. Table 6 gives correct classification 
accuracy trading off (CCATO) of all 3 proposed model 
and CSP method. Once again, the result in table 6 shows 
that PCSP-b1 model has a lowest CCATO than other 
methods. CSP method has highest CCATO which mean 

that this method is so sensitive to noise, artifact and 
non-stationary data such as EEG. While PCSP-b1 method 
is more robust to noise and non-stationary signal. 

V. CONCLUSION
In this work, 3 parallel models extending from CSP 

method were proposed. Using real EEG data, the 
simulation result show parallel model CSP with single 
classifier outperforms other method and especially the 
conventional CSP method. The proposed parallel model 
proved to be able to boost classification performance and 
is much more robust to noise, artifact and non-stationary 
signal than conventional CSP method. Parallel model CSP 
also reduce that number of electrode selected by spatial 
filter significantly which gave the advantage to extract 
other feature like time-frequency based like short time 
Fourier transformation or wavelet transformation that could 
be give a BCI system more useful to interpretation of 
EEG pattern. 
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