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Abstract: It is well knowns that based on the CSP (Common Spatial Pattern) algorithm, the linear projection of an EEG

(Electroencephalography) signal can be made to spaces that optimize the discriminant between two patterns.

Sharing

disadvantages from linear time invariant systems, CSP suffers from the non-stationary nature of EEGs causing the performance
of the classification in a BCI (Brain-Computer Interface) system to drop significantly when comparing the training data and test
data. The author has suggested a simple idea based on the parallel model of CSP filters to improve the performance of BCI
systems. The model was tested with a simple CSP algorithm (without any elaborate regularizing methods) and a perceptron
learning algorithm as a classifier to determine the improvement of the system. The simulation showed that the parallel model
could improve classification performance by over 10% compared to conventional CSP methods.

Keywords: parallel model, common spatial pattern, perceptron learning algorithm, electroencephalography, brain-computer

interface

I. INTRODUCTION

By attaching multiple electrodes on the head of human,
measuring electrical potential from those electrodes keep
changing and create the pattern that nowadays technology
could find and identify those pattern and regard them as
intentions of human to control wheelchair, robot or even
surfing the web. These are the key point of brain-computer
interface technology based on EEG (electroencephalography)
signal [1][7].

This technology benefit to specially to patient who

suffers from neurological disease such as ALS
(Amyotrophic Lateral Sclerosis), spin cord injury, stroke and
other case like condition impairment. Using machine

learning algorithm, pattern could be identified and new
coming EEG signal could be decided to one of the library
of pattern from user intention and make it to control output
application that help for those patient.

But, that

Researchers, nowadays, struggle in find new way to identify

understand those pattern is not casy.

people intention using those EEG signals in reliable system
and could be in realtime[8].
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The famous method using in current BCI based EEG is

called common spatial pattern. It is a spatial filtering

technique  that takes advantage of time-invariant
transformation of an EEG signal into the same spatial-
temporal space with constraining in optimizes the

discriminant between two states of EEG signal patterns [2].

As  other
technique, CSP algorithm could optimize it performance if
if the

probabilistic sense, CSP algorithm bases on the estimated

methods of time-invariant transformation

only input signal is stationary by nature. In
variables by assuming that those estimate variables are
In contrast to those
of EEG

The characteristic

unchanged by any circumstance.

assumption, natural characteristic signal is

non-stationary —sources. of distribution
density function of an EEG signal keep changing from
time to time, session to session, between one subject to
another. This problem cause the stationary model of EEG
to performance poorly especially during the testing set
were applied to estimate system performance.

To handle this RCSP

(Regularize Common Spatial Pattern) were introduced by

problem, some method like
adding the panelty term to the objective function of CSP
or in the estimate covariance term of CSP algorithm. By
a CSP model
constraint was created. Those constrains try to extract,

adding the panelty term, with more
within constraint information, to over come the sensitvity
of CSP to noise and overfitting problem and specially to

non-stationary character of CSP. In [3], authors had
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unified the theory over the RCSP algorithm and proposed
news fours RCSP algorithm. The simulation using 17 data
sets showed the improvement over the classification
accuracy rate and also enable performed effectively for
subject-subejct transfer problem. Another use of regularize
CSP algorithm is to solve the problem of non-stationary
problem directly by regularize CSP towards stationary
subspace and showed it could increase the classification
accuracy of classifier. It is also enable for subjects that
hardly control a BCI system to do use this system better
than traditional CSP algorithm.

In this paper, authors tackled the problem of
non-stationary EEG model by different mean. Using the
subspace model of parallel CSPs, the non-stationary source
of EEG could be suppressed, and performance of classifier
could take benefit from this solution. By doing so, it
leads to problem of model selection of optimal
sub-parallel space and the specific number of spatial
information of output of each sub-space as we increased
number of features. The detail of method will introduce in
third part of paper.

II. RELATED WORKS
1. CSP (Common Spatial Pattern)

CSP is a orthogonal transformation of a segment of
EEG signal with constraint of maximizing the discriminant
of spatial information (energy of electrodes) between two
patterns for instance: the imagination of right hand and
right foot movement. By letting XER €T i the
segment of EEG signal with of C electrodes and T time
sample that is already filtered and centering. The next
step of CSP algorithm is to calculate the covariance

matrix as in (1).

©_ 1 T _
b fﬁi;XiXi e={+-} %))

Where [, is set of trial belongs to pattern c={+}
corresponds to imagination of right hand and c¢={—}
corresponds to imagination of right foot. Then the
objective function of CSP can be taken as in (2), where

J(W) is in (3).

argmax . J( W) )
wrs,w
JW) = W (3)

Where S5; = S -2 s the discriminant activity
EEG of pattern {+}and{—} and SC:ZH) +357 s the
common activity of EEG patterns. As  notice,

J(EW) = J(W), for any arbitrary value k. This means
that we could scale the value if W to any value without

changing value of discriminant function J( 7). By letting
W7YS, W=1, the maximization of objective function in (3)

could be regard as maximizing problem with constraint.

argmax ;, W7S, W,

4
constraint: WIS, W=1 @

Using Lagrange’s multiplier technique, the maximizing
problem can be done as in (5) and (6), where A is

Lagrange multiplier coefficient and need to be found.
argmax y.L(\, W) (3)
LOW) = WIS, W=\ WTs.w (6)

The quadratic form of (6) makes it easy to find the
solution of as ZLZ(\ W) is maximum when partial
differential of L(1¥) respects to W is equal to zero.
Then solution, the value of W can be found as:

WS, =AxWwT's, @)

Here, the solution can be interprets as generalize
eigenvalues and eigenvectors decomposition of matrix S,
and S,. W= [wl,...,wC] is matrix where its column vector
is eigenvectors w, corresponding to eigenvalue A\, € A.

In the spatial filtering sense, CSP algorithm could
increase the performance of classifier by keeping only the
most informative spatial information ones and reject the
lesser information. By reducing the spatial information
from total number of channel of C to A < C, the
effectiveness of feature group could be enhanced, so
increasing performance of classifier or at lease keeping the
same level of performance as too many feature could lead
to curse of dimension problem. As the spatial filtering
concept, CSP acts as the transformation of an EEG signal

XERT to YERE*T where K< C.
vy=w'x ®)

0.8

Normalized eigenvalues
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Fig. 1. Arranged electrodes in the descending order of its

eigenvalue.
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Where W& R obtains by concatenating & number
eigenvector w; from the pool of eigenvectors [w,...,w].
In [1], authors suggested by selecting 6 out of total
eigenvectors where the first 3 are eigenvectors that
correspond to 3 first largest eigenvalues that arranged in
descending order as demonstrated in Fig. 1 and other 3
have the smallest eigenvalues.

In this paper, author used the model selection to
determine number K of spatial output. In order to select
author  proposed  the  algorithm  bellow,  where
W= [w,,...,w] is arranging in the descending order of it

eigenvalues A =[\,.... A\

1. Initial:
- IjV: [] set of selected eigenvectors
- W=[wy,...,w,]; pool eigenvectors
2. For i =1,2,....C
- If % is odd, then w,

select wj'irsl’ else

Wielet = Wigst-
- Add wyp, to W
- Remove w from W

select
- Calculate model fitness using W
3. Select the best model.

Feature extracts by CSP algorithm can be calculated
using (9), where log(.) is logarithm operator and war(.) is
variance of filtered signal Y in time sample dimension.

z=1log(var(Y)) ©)

2. PLA (Perceptron Learning Algor ithm)

The simplicity and with non pre-assumption of feature
probabilistic density function of PLA makes it simple and
easy to use as the classifier in this paper. PLA with
linear model and gradient descending rule for updating
weight classifier for of EEG could use features extracted
using equation (9). The linear model of PLA takes the
simple form as in (10), where z is feature vector with

#(z,) =1 and w is weight vector with w, is called bias.

Function f(.) is a step operator defined as in equation
(11). The target value (+1) can be defined as imagination
of right hand movement and (-1) is imagination of right

foot movement.

y(z)=f(w¢(x)) (10)
=Lz

The convergences of PLA can be observed through
estimation over error of classified by PLA defined as in

(12), where (x,,t,) is pair of training feature and training

target class (t,E {—I—l,*l}). M is set of miss

BSeL N

classification samples. |M| denotes size of set M. Using
partial deferential of FE(w) respect to w, the gradient
value of E(w) can be found as in (13).

1

Blw) == 117 Y wlelz,)t, (12)
neM
AB(w) :—Ai[ 3 6la,)t, (13)
ne M

In case of feature space is not linear separable, PLA
would not find the convergences value (E(w) =0). To
avoid such scenario, PLA with pocket algorithm could
help PLA to accept certain value of error even though
PLA could not converge. The updating rule of PLA using
gradient descending and pocket algorithm is given bellow,

where 7 is learning rate parameter for PLA.

1. Initiate: w(t=0), B(w(t=0)) =1
2. Fort =0, 1, ..., t .,
- Compute gradient: A E(w(t))
- Update weight: w(t+1) = w(t) —nA E(w(t))
- Compute Error rate: Elw(t+1))
- If E(w(t+1)) < E(w(t)), then set:
w=w(t+1).
- Iterate next step: t=1¢+1

do the following:

3. Return w

III. PARALLEL MODEL OF CSP

1. Parallel model

In this paper, we investigated two model of parallel
temporal subspace models as showing in Fig. 2. Both
parallel models undergoes the same preprocessing method:
band pass filtering and sub-segmenting of filtered EEG.
Band pass filter is designed with IIR filter using
windowing technique. Filtering window is practical
Hamming window of 1 second length. Pass band
frequency range is selecting at 7-30Hz which is the most
active frequency rhythm related to motor movement and
imagination of movement [5]. Subject specific frequency
band was selecting in this paper as frequency range at
7-30Hz has the generalization sense to all BCI subjects.

Sub-segment EEG, then, is created using rectangular
window of size 7'= 1s with overlapping size from each
window to another at At. To find the fittest value of
At, it values is selecting from 0.1s to 1s with 0.1s
increasing step. At value At=1s, it means that all
subspace windows are not overlapping each other at all.

In voting classifier parallel model, Fig. 2(a), EEG
signal of N subspace are filtered with different spatial
filter using CSP method and then extracted features using
equation (9) are classified with N different PLAs
classifiers, where N is number of sub-segment EEG. The
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Fig. 2. Proposed parallel subspace models. (a) is parallel in both
CSPs and classifier PLAs (PCSP-a). (b) is parallel model
of CSPs with single classifier without feature selection
method (PCSP-bl). (c) is parallel model of CSPs with
single classifier with feature selection method (PCSP-b2).

final result could be obtained through voting the result for
majority as in (14), where y, €{+1,—1},i=1,...V is the
result of individual classifier, N is the number of subspace
and f(.) is a step function as in (11). We called this
method PLCSP-a.

N

Ypina =1 (D29:) (14)

For signal classifier model, Fig. 2(b), the feature created
from N individual CSPs are concatenated into single
feature vector and then are classified by single PLA. As
the result, feature classified by single PLA has dimension
N times larger that classifier in the parallel model. The
output from PLA is the final result of this model as
showing in Fig. 2(b-1). Since the feature of this parallel
mode is large, we integrated feature selection base on
Fisher score to reduce size of feature created a model as
in Fig. 2(b-2). Fisher score could be understand as in

(15), where pjand o] are mean and standard deviation of

feature 2’ in class pattern k. p/and ¢’ are mean and

standard deviation of feature ;' of all class patterns.
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We called parallel model of CSP with single classifier
without feature selection “PCSP-bl” and a model with
feature selection is called “PCSP-b2”.

2. Model selection

In proposed parallel subspace model, there are two
parameters concerning in optimizing the performance of
system: number of sub-segment space causing by change
value of overlapping size At=0.1,02,..,7 and
K={1,..,

CSP algorithm where C' is total input number of electrode

C} number of spatial information output from

before CSP and 7= 1s is length of sub-segment window
size. To obtained the optimal model, best value of At
and KA need to be selected from its corresponding set
based on the fitness value in (17). The coefficients

=0.6,a,=0.2,a3 = 0.1 are fitness parameter weights.
The square on the component in fitness related At and
K are to ensure the smoothness of fitness function.
Kappa is Cohen’s coefficient (Kappa coefficient) of
model with as parameter of At and K. Kappa coefficient
is closely related classification accuracy rate [6]. Kappa
coefficient can be found using (18), where Pr(o) is an
probability,  Pr(e)is

observe  agreement expected

agreement probability.

a; X Kappa—a, X At)? a X(K)Z
1 2 T T 93 ~
G(ALK) = T cl 17
a; +a, +ag
B Pr(o) —Pr(e)
Kappaf—l_pr(e) (18)

IV. EXPERIMENT AND RESULT

1. Experimental data

EEG signal obtained from BCI competition III. Here we
analysis for subject independent system using dataset IVa
of the competition data set. This data set was recorded
from 5 healthy subjects using visual stimuli with 118
electrodes EEG equipment. Fig. 3 shows time scheme of
experiment during recording EEG signal. Each trial
conducted by indicating visual cue for 3.5s follow by 1
of 3 motor imageries that subject should perform: left
hand, right hand and foot. The target cues were
intermitted by period of random length, 1.75 to 2.25s, in
which subject could relax [6]. The BCI III data set [Va
released for public use contain 2 classes (right hand and
foot). Each subjects have totally 280 trails with sampling
frequency of 100Hz.

In this study, 150 trials of total data were randomly
pick for training and validation, the rest of data were
treated as test set. With 150 training samples, data were
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Table 1. Selected model of PCSP-a method for the best fitness

values in cross-validation set. K is number of electrodes,

At is overlapping size of sub-window parameter.

Subject K At Kappa Fitness
aa 14 0.7s 0.94 0.66
al 22 0.7s 0.96 0.66
av 31 0.7s 0.84 0.65
aw 7 0.7s 0.97 0.66
ay 13 0.7s 0.95 0.66

Fig. 3.

Schema represent 10 fold-cross validation scheme. Each
rectangular represent block partitioning of data. For each
fold, data in unhatched blocks are used to train model and
data in hatched block is used to validate model. Final result
is averaging result of in validation set of all folds.

¥ 2. Cross-validation F&ollA & o] sl EY 2 3He 93
PCSP-b1 WP o] AMelg mdl k= AFo] ol At
= 2H ] Y54 Apo] 28] 7ot

Table 2. Selected model of PCSP-bl method for the best fitness
values in cross-validation set. K is number of electrodes,

Stimuli Blank screen
35 % 175:225—>

Imagination task Rest

.

1% 4. BCI competition I H|©]E Al IVa2] 3} A3 gjzt}
o BbdEel

Fig. 4. Time scheme of experiment paradigm of BCI competition
III data set IVa.

divided using 10 fold cross-validation as showing in Fig.
4 and evaluation the fitness function in (17) of each
model of (At,K) using validation data block. With
N=10 is number of cross validation, the final fitness

value is the averaging fitness across all fold as in (19),
where g, is the fitness of fold . The best model to
select is using maximizing criteria as in (20). The best
value of (At K,,,), the, are used in to evaluate the

performance of test set.

_ 1 &
g = 2504t K) (19)
i=1
(Atbest’ Kbest): argmaX(AtJ;jE (20)

The result of each method was repeated 100 times,
while each time, the training set data were picked by
random. This random separation and repetition of process
are to ensure the generalization result of method according
to the law of large number. The single evaluation using
with partitioning data set could lead to fault conclusion of
result. The final result obtained in this paper is the
averaging of all repetitions
2. Simulation results

Models selected by proposed methods and CSP method
are summarized in Table 1-4. In table 1-4, K is number

At is overlapping size of sub-window parameter.

Subject K At Kappa Fitness
aa 12 0.7s 0.99 0.66
al 7 0.7s 1.00 0.66
av 20 0.7s 0.94 0.66
aw 5 0.7s 1.00 0.66
ay 6 0.7s 1.00 0.66

¥ 3. Cross-validation F&ollA & Z o] I EU 2 3S 9]
PCSP-b2 o AEe ndl k= A=o] S2o]a, At

© SH Y A= Ate]20] F7]o|th

Table 3. Selected model of PCSP-b2 method for the best fitness

values in cross-validation set. K is number of electrodes,

At is overlapping size of sub-window parameter.

Subject K At Kappa Fitness
aa 10 0.7s 0.87 0.66
al 10 0.7s 0.92 0.65
av 9 0.7s 0.88 0.59
aw 9 0.7s 0.99 0.66
ay 9 0.7s 0.95 0.65

of electrodes output of optimal CSP model, At is
overlapping size of sub-window of parallel subspaces. The
measurement of performance of model are measured by
Kappa value in equation (18) and fitness assigned in
equation (17). Comparing number of electrode required for
achieve the maximum fitness value in equation (20), all
proposed parallel models based CSP selected less number
of electrodes (K) than conventional CSP method. The
minimum electrode selected by all 3 parallel model are 7,
5, 9 for PCSP-a, PCSP-bl, PCSP-b2 respectively. While
for CSP method, the minimum electrodes selected is K=

25 electrodes. The maximum number of selected electrodes
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¥ 4. Cross-validation g4 HZAe nEYX 7HS 93
CSP o] Aele md K= =e] 4= o|th
Table 4. Selected model of CSP method for the best fitness values

in cross-validation set. K is number of electrodes.

Subject K Kappa
aa 47 0.97
al 44 0.88
av 61 091
aw 25 0.80
ay 37 0.88

® 5 3709 Ald E CSP 22 9] Kappa #k= Hl L gh
E. 78 Z kappa & 8 vl=s3i T

Table 5. Comparing Kappa values with test data set of 3 proposed
methods and conventional model of CSP. The highest
Kappa value of each subject are marked by bold font.

Subject PCSP-a | PCSP-bl | PCSP-b2 CSp
aa 0.46 0.48 0.23 0.03
al 0.91 0.97 0.95 0.21
av 0.24 0.28 0.15 -0.04
aw 0.65 0.75 0.61 0.12
ay 0.78 0.89 0.88 0.08

are 31, 20, 10, 61 for PCSP-a, PCSP-bl, PCSP-b2 and
CSP method respectively. Notice that for PCSP-b2 number
of selected electrodes of all subject are almost the same.
For parallel models, parameter for sub-segmenting window
is the same, At=0.7s.

Table 5 shows Kappa values of each methods in test
data set after applied the selected model (with
corresponding K and 40t values). It is clear that parallel
model with single classifier (PCSP-bl) performs better
than other method as its Kappa values evaluation are
higher than other parallel models and CSP method.
PCSP-bl also shows its robustness in subject variation
problem as it still standout over other methods with all
data from different subject. In classification accuracy
sense, Fig. 5 shows that PCSP-bl model achieve accuracy
98.5% for subject al and improve performance over than
10% comparing to CSP method. While PCSP-a method
stands in second place of best classification performance.

In common sense, there are always trading off between
training model and testing model as the testing
performance never bound outside performance in training
model. Measuring this value could help us know that
while method has a good generalization using the training
data than others. Table 6 gives correct classification
accuracy trading off (CCATO) of all 3 proposed model
and CSP method. Once again, the result in table 6 shows
that PCSP-bl model has a lowest CCATO than other
methods. CSP method has highest CCATO which mean

E 6. Eflold tlolEe} HI2H HolHo BF F8=
H 7} 2H2- trade of 5 WFERA 3ol X8kA A
sk

Table 6. Comparing correct classification accuracy trading off
between training model and testing model. The lowest

trading off performance (%) are marked by bold font.

Subject PCSP-a | PCSP-bl | PCSP-b2 CSp
aa 26.92 26.15 38.6 42.64
al 4.62 1.54 2.31 32.18
av 39.23 26.92 43.85 51.27
aw 17.69 1231 19.23 28.05
ay 10.77 5.38 6.15 40.93

100

I FCSP-a
E==PrcsP-bi
R PCSP-b2

90

80

70

60

50

40

Classification accuracy

30

20

Subject

95 ARK WY mPES] &F A WAk PCSP-,
PCSP-b1, PCSP-b2, conventional CSP ®H.

Fig. 5. Comparing classification performance of proposed parallel
models: PCSP-a, PCSP-bl, PCSP-b2, with conventional
CSP method.

that this method is so sensitive to noise, artifact and
non-stationary data such as EEG. While PCSP-bl method

is more robust to noise and non-stationary signal.

V. CONCLUSION

In this work, 3 parallel models extending from CSP
method were proposed. Using real EEG data, the
simulation result show parallel model CSP with single
classifier outperforms other method and especially the
conventional CSP method. The proposed parallel model
proved to be able to boost classification performance and
is much more robust to noise, artifact and non-stationary
signal than conventional CSP method. Parallel model CSP
also reduce that number of electrode selected by spatial
filter significantly which gave the advantage to extract
other feature like time-frequency based like short time
Fourier transformation or wavelet transformation that could
be give a BCI system more useful to interpretation of
EEG pattern.
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