References
- S. J. Chang, J. G. Choi, and D. Skoug, Evaluation formulas for conditional function space integrals I, Stoch. Anal. Appl. 25 (2007), no. 1, 141-168. https://doi.org/10.1080/07362990601052185
- D. M. Chung and S. J. Kang, Evaluation formulas for conditional abstract Wiener integrals, Stoch. Anal. Appl. 7 (1989), no. 2, 125-144. https://doi.org/10.1080/07362998908809173
- D. M. Chung and S. J. Kang, Evaluation formulas for conditional abstract Wiener integrals II, J. Korean Math. Soc. 27 (1990), no. 2, 137-144.
- D. M. Chung and S. J. Kang, Evaluation of some conditional abstract Wiener integrals, Bull. Korean Math. Soc. 26 (1989), no. 2, 151-158.
- H. S. Chung and S. J. Chang, Some applications of the spectral theory for the integral transform involving the spectral representation, J. Funct. Space Appl. 2012 (2012), Article ID 573602, 17 pages.
- H. S. Chung and V. K. Tuan, Generalized integral transforms and convolution products on function space, Integral Transforms Spec. Funct. 22 (2011), no. 8, 573-586. https://doi.org/10.1080/10652469.2010.535798
- H. S. Chung and V. K. Tuan, Fourier-type functionals on Wiener space, Bull. Korean Math. Soc. 49 (2012), no. 3, 609-619. https://doi.org/10.4134/BKMS.2012.49.3.609
-
H. S. Chung and V. K. Tuan, A sequential analytic Feynman integral of functionals in
$L_2$ (C0[0, T]), Integral Transforms Spec. Funct. 23 (2012), no. 7, 495-502. https://doi.org/10.1080/10652469.2011.606218 - R. P. Feynman, Space-time approach to non-relativistic quantum mechanics, Rev. Modern Phys. 20 (1948), 367-387. https://doi.org/10.1103/RevModPhys.20.367
- G. W. Johnson and M. L. Lapidus, The Feynman Integral and Feynman's Operational Calculus, Clarendon Press, Oxford, 2000.
- G. W. Johnson and D. L. Skoug, Scale-invariant measurability in Wiener space, Pacific J. Math. 83 (1979), no. 1, 157-176. https://doi.org/10.2140/pjm.1979.83.157
- M. Kac, On distributions of certain Wiener functionals, Trans. Amer. Math. Soc. 65 (1949), 1-13. https://doi.org/10.1090/S0002-9947-1949-0027960-X
- M. Kac, On Some connetions between probability theory and differential and integral equations, In: Proc. Second Berkeley Symposium on Mathematical Statistic and Probability( ed. J. Neyman), 189-215, Univ. of California Press, Berkeley, 1951.
- M. Kac, Probability, Number theory, and Statistical Physics, K. Baclawski and M.D. Donsker (eds.), Mathematicians of Our Time 14 (Cambridge, Mass.-London, 1979). 274 SEUNG JUN CHANG, JAE GIL CHOI, AND HYUN SOO CHUNG
- M. Kac, Integration in Function Spaces and Some of its Applications, Lezione Fermiane, Scuola Normale Superiore, Pisa, 1980.
- H.-H. Kuo, Gaussian Measure in Banach Space, Lecture Notes in Math. 463, Springer, Berlin, 1975.
- E. Merzbacher, Quantum Mechanics 3rd ed., Wiley, NJ (1998), Chap. 5.
- C. S. Park, M. G. Jeong, S. K. Yoo, and D. K. Park, Double-well potential: The WKB approximation with phase loss and anharmonicity effect, Phys. Rev. A 58 (1998), 3443-3447. https://doi.org/10.1103/PhysRevA.58.3443
- B. Simon, Functioanl Integration and Quantum Physis, Academic Press, New York, 1979.
- V. K. Tuan, Paley-Wiener type theorems, Frac. Calc. Appl. Anal. 2 (1999), no. 2, 135-143.
- T. Zastawniak, The equaivalence of two approaches to the Feynman integral for the anharmonic oscillator, Univ. Iagel. Acta Math. 28 (1991), 187-199.
Cited by
- Relationships Involving Transforms and Convolutions Via the Translation Theorem vol.32, pp.2, 2014, https://doi.org/10.1080/07362994.2013.877350
- A Modified Analytic Function Space Feynman Integral and Its Applications vol.2014, 2014, https://doi.org/10.1155/2014/671960
- Analytic Feynman integrals of functionals in a Banach algebra involving the first variation vol.37, pp.2, 2016, https://doi.org/10.1007/s11401-016-0967-3
- A New Concept of the Analytic Operator-Valued Feynman Integral on Wiener Space vol.38, pp.4, 2017, https://doi.org/10.1080/01630563.2016.1251455