DOI QR코드

DOI QR Code

Protective Effects of Oleic Acid Against Palmitic Acid-Induced Apoptosis in Pancreatic AR42J Cells and Its Mechanisms

  • Ahn, Joung Hoon (Department of Physiology, College of Medicine, Hallym University) ;
  • Kim, Min Hye (Department of Biomedical Sciences, College of Natural Sciences, Hallym University) ;
  • Kwon, Hyung Joo (Department of Microbiology, College of Medicine, Hallym University) ;
  • Choi, Soo Young (Department of Biomedical Sciences, College of Natural Sciences, Hallym University) ;
  • Kwon, Hyeok Yil (Department of Physiology, College of Medicine, Hallym University)
  • Received : 2012.10.22
  • Accepted : 2012.12.21
  • Published : 2013.02.28

Abstract

Palmitic acid (PAM), one of the most common saturated fatty acid (SFA) in animals and plants, has been shown to induce apoptosis in exocrine pancreatic AR42J cells. In this study, we investigated cellular mechanisms underlying protective effects of oleic acid (OLA) against the lipotoxic actions of PAM in AR42J cells. Exposure of cells to long-chain SFA induced apoptotic cell death determined by MTT cell viability assay and Hoechst staining. Co-treatment of OLA with PAM markedly protected cells against PAM-induced apoptosis. OLA significantly attenuated the PAM-induced increase in the levels of pro-apoptotic Bak protein, cleaved forms of apoptotic proteins (caspase-3, PARP). On the contrary, OLA restored the decreased levels of anti-apoptotic Bcl-2 family proteins (Bcl-2, Bcl-xL, and Mcl-1) in PAM-treated cells. OLA also induced up-regulation of the mRNA expression of Dgat2 and Cpt1 genes which are involved in triacylglycerol (TAG) synthesis and mitochondrial ${\beta}$-oxidation, respectively. Intracellular TAG accumulation was increased by OLA supplementation in accordance with enhanced expression of Dgat2 gene. These results indicate that restoration of anti-apoptotic/pro-apop-totic protein balance from apoptosis toward cell survival is involved in the cytoprotective effects of OLA against PAM-induced apoptosis in pancreatic AR42J cells. In addition, OLA-induced increase in TAG accumulation and up-regulation of Dgat2 and Cpt1 gene expressions may be possibly associated in part with the ability of OLA to protect cells from deleterious actions of PAM.

Keywords

References

  1. Rasouli N, Molavi B, Elbein SC, Kern PA. Ectopic fat accumulation and metabolic syndrome. Diabetes Obes Metab. 2007;9:1-10.
  2. Unger RH. Lipotoxicity in the pathogenesis of obesity-dependent NIDDM. Genetic and clinical implications. Diabetes. 1995;44:863-870.
  3. Shimabukuro M, Wang MY, Zhou YT, Newgard CB, Unger RH. Protection against lipoapoptosis of beta cells through leptindependent maintenance of Bcl-2 expression. Proc Natl Acad Sci USA. 1998;95:9558-9561. https://doi.org/10.1073/pnas.95.16.9558
  4. Unger RH, Orci L. Lipoapoptosis: its mechanism and its diseases. Biochim Biophys Acta. 2002;1585:202-212. https://doi.org/10.1016/S1388-1981(02)00342-6
  5. Kusminski CM, Shetty S, Orci L, Unger RH, Scherer PE. Diabetes and apoptosis: lipotoxicity. Apoptosis. 2009;14:1484- 1495. https://doi.org/10.1007/s10495-009-0352-8
  6. Mu YM, Yanase T, Nishi Y, Tanaka A, Saito M, Jin CH, Mukasa C, Okabe T, Nomura M, Goto K, Nawata H. Saturated FFAs, palmitic acid and stearic acid, induce apoptosis in human granulosa cells. Endocrinology. 2001;142:3590-3597. https://doi.org/10.1210/endo.142.8.8293
  7. Eitel K, Staiger H, Brendel MD, Brandhorst D, Bretzel RG, Haring HU, Kellerer M. Different role of saturated and unsaturated fatty acids in beta-cell apoptosis. Biochem Biophys Res Commun. 2002;299:853-856. https://doi.org/10.1016/S0006-291X(02)02752-3
  8. Akazawa Y, Cazanave S, Mott JL, Elmi N, Bronk SF, Kohno S, Charlton MR, Gores GJ. Palmitoleate attenuates palmitateinduced Bim and PUMA up-regulation and hepatocyte lipoapoptosis. J Hepatol. 2010;52:586-593. https://doi.org/10.1016/j.jhep.2010.01.003
  9. Suzuki J, Akahane K, Nakamura J, Naruse K, Kamiya H, Himeno T, Nakamura N, Shibata T, Kondo M, Nagasaki H, Fujiya A, Oiso Y, Hamada Y. Palmitate induces apoptosis in Schwann cells via both ceramide-dependent and independent pathways. Neuroscience. 2011;176:188-198. https://doi.org/10.1016/j.neuroscience.2010.11.035
  10. Turpin SM, Lancaster GI, Darby I, Febbraio MA, Watt MJ. Apoptosis in skeletal muscle myotubes is induced by ceramides and is positively related to insulin resistance. Am J Physiol Endocrinol Metab. 2006;291:E1341-1350. https://doi.org/10.1152/ajpendo.00095.2006
  11. Cazanave SC, Elmi NA, Akazawa Y, Bronk SF, Mott JL, Gores GJ. CHOP and AP-1 cooperatively mediate PUMA expression during lipoapoptosis. Am J Physiol Gastrointest Liver Physiol. 2010;299:G236-243. https://doi.org/10.1152/ajpgi.00091.2010
  12. Soumura M, Kume S, Isshiki K, Takeda N, Araki S, Tanaka Y, Sugimoto T, Chin-Kanasaki M, Nishio Y, Haneda M, Koya D, Kashiwagi A, Maegawa H, Uzu T. Oleate and eicosapentaenoic acid attenuate palmitate-induced inflammation and apoptosis in renal proximal tubular cell. Biochem Biophys Res Commun. 2010;402:265-271. https://doi.org/10.1016/j.bbrc.2010.10.012
  13. Yuzefovych L, Wilson G, Rachek L. Different effects of oleate vs. palmitate on mitochondrial function, apoptosis, and insulin signaling in L6 skeletal muscle cells: role of oxidative stress. Am J Physiol Endocrinol Metab. 2010;299:E1096-1105. https://doi.org/10.1152/ajpendo.00238.2010
  14. Kovanlikaya A, Mittelman SD, Ward A, Geffner ME, Dorey F, Gilsanz V. Obesity and fat quantification in lean tissues using three-point Dixon MR imaging. Pediatr Radiol. 2005;35:601-607. https://doi.org/10.1007/s00247-005-1413-y
  15. Yan MX, Li YQ, Meng M, Ren HB, Kou Y. Long-term high-fat diet induces pancreatic injuries via pancreatic microcirculatory disturbances and oxidative stress in rats with hyperlipidemia. Biochem Biophys Res Commun. 2006;347:192-199. https://doi.org/10.1016/j.bbrc.2006.06.063
  16. Cnop M, Hannaert JC, Hoorens A, Eizirik DL, Pipeleers DG. Inverse relationship between cytotoxicity of free fatty acids in pancreatic islet cells and cellular triglyceride accumulation. Diabetes. 2001;50:1771-1777. https://doi.org/10.2337/diabetes.50.8.1771
  17. Gumbs AA. Obesity, pancreatitis, and pancreatic cancer. Obes Surg. 2008;18:1183-1187. https://doi.org/10.1007/s11695-008-9599-3
  18. Habara Y, Uehara A, Takasugi Y, Namiki M, Kanno T. Characterization of secretory responses in exocrine pancreas of genetically obese Zucker rats. Int J Pancreatol. 1991;10:237-245.
  19. Hardt PD, Krauss A, Bretz L, Porsch-Ozcurumez M, Schnell- Kretschmer H, Mser E, Bretzel RG, Zekhorn T, Klör HU. Pancreatic exocrine function in patients with type 1 and type 2 diabetes mellitus. Acta Diabetol. 2000;37:105-110. https://doi.org/10.1007/s005920070011
  20. Ammann RW, Raimondi S, Maisonneuve P, Mullhaupt B. Zurich Pancreatitis Study Group. Is obesity an additional risk factor for alcoholic chronic pancreatitis? Pancreatology. 2010; 10:47-53. https://doi.org/10.1159/000225921
  21. Landau Z, Forti E, Alcaly M, Birk RZ. Palmitate induced lipoapoptosis of exocrine pancreas AR42J cells. Apoptosis. 2006;11:717-724. https://doi.org/10.1007/s10495-006-5425-3
  22. Spector AA. Fatty acid binding to plasma albumin. J Lipid Res. 1975;16:165-179.
  23. Park YH, Kim YJ, Son IH, Yang HD. Inhibition of betaamyloid( 1-40) Peptide Aggregation and Neurotoxicity by Citrate. Korean J Physiol Pharmacol. 2009;13:273-279. https://doi.org/10.4196/kjpp.2009.13.4.273
  24. Hirasawa A, Hara T, Katsuma S, Adachi T, Tsujimoto G. Free fatty acid receptors and drug discovery. Biol Pharm Bull. 2008;31:1847-1851. https://doi.org/10.1248/bpb.31.1847
  25. Chavez JA, Summers SA. Characterizing the effects of saturated fatty acids on insulin signaling and ceramide and diacylglycerol accumulation in 3T3-L1 adipocytes and C2C12 myotubes. Arch Biochem Biophys. 2003;419:101-109. https://doi.org/10.1016/j.abb.2003.08.020
  26. Azevedo-Martins AK, Monteiro AP, Lima CL, Lenzen S, Curi R. Fatty acid-induced toxicity and neutral lipid accumulation in insulin-producing RINm5F cells. Toxicol In Vitro. 2006;20: 1106-1113. https://doi.org/10.1016/j.tiv.2006.02.007
  27. Otsuki M, Yamamoto M, Yamaguchi T. Animal models of chronic pancreatitis. Gastroenterol Res Pract. 2010; ID 403295.
  28. Han MS, Park SY, Shinzawa K, Kim S, Chung KW, Lee JH, Kwon CH, Lee KW, Lee JH, Park CK, Chung WJ, Hwang JS, Yan JJ, Song DK, Tsujimoto Y, Lee MS. Lysophosphatidylcholine as a death effector in the lipoapoptosis of hepatocytes. J Lipid Res. 2008;49:84-97. https://doi.org/10.1194/jlr.M700184-JLR200
  29. Maedler K, Oberholzer J, Bucher P, Spinas GA, Donath MY. Monounsaturated fatty acids prevent the deleterious effects of palmitate and high glucose on human pancreatic beta-cell turnover and function. Diabetes. 2003;52:726-733. https://doi.org/10.2337/diabetes.52.3.726
  30. Masuoka HC, Mott J, Bronk SF, Werneburg NW, Akazawa Y, Kaufmann SH, Gores GJ. Mcl-1 degradation during hepatocyte lipoapoptosis. J Biol Chem. 2009;284:30039-30048. https://doi.org/10.1074/jbc.M109.039545
  31. Allagnat F, Cunha D, Moore F, Vanderwinden JM, Eizirik DL, Cardozo AK. Mcl-1 downregulation by pro-inflammatory cytokines and palmitate is an early event contributing to $\beta$ -cell apoptosis. Cell Death Differ. 2011;18:328-337. https://doi.org/10.1038/cdd.2010.105
  32. Coll T, Eyre E, Rodriguez-Calvo R, Palomer X, Sanchez RM, Merlos M, Laguna JC, Vazquez-Carrera M. Oleate reverses palmitate-induced insulin resistance and inflammation in skeletal muscle cells. J Biol Chem. 2008;283:11107-11116. https://doi.org/10.1074/jbc.M708700200
  33. Nemcova-Furstova V, James RF, Kovar J. Inhibitory effect of unsaturated fatty acids on saturated fatty acid-induced apoptosis in human pancreatic $\beta$ -cells: activation of caspases and ER stress induction. Cell Physiol Biochem. 2011;27:525-538. https://doi.org/10.1159/000329954
  34. Nolan CJ, Larter CZ. Lipotoxicity: why do saturated fatty acids cause and monounsaturates protect against it? J Gastroenterol Hepatol. 2009;24:703-706. https://doi.org/10.1111/j.1440-1746.2009.05823.x
  35. Cases S, Smith SJ, Zheng YW, Myers HM, Lear SR, Sande E, Novak S, Collins C, Welch CB, Lusis AJ, Erickson SK, Farese RV Jr. Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc Natl Acad Sci USA. 1998;95:13018-13023. https://doi.org/10.1073/pnas.95.22.13018
  36. Oelkers P, Behari A, Cromley D, Billheimer JT, Sturley SL. Characterization of two human genes encoding acyl coenzyme A:cholesterol acyltransferase-related enzymes. J Biol Chem. 1998;273:26765-26771. https://doi.org/10.1074/jbc.273.41.26765
  37. Jogl G, Tong L. Crystal structure of carnitine acetyltransferase and implications for the catalytic mechanism and fatty acid transport. Cell. 2003;112:113-122. https://doi.org/10.1016/S0092-8674(02)01228-X
  38. Stone SJ, Myers HM, Watkins SM, Brown BE, Feingold KR, Elias PM, Farese RV Jr. Lipopenia and skin barrier abnormalities in DGAT2-deficient mice. J Biol Chem. 2004;279: 11767-11776. https://doi.org/10.1074/jbc.M311000200
  39. Listenberger LL, Han X, Lewis SE, Cases S, Farese RV, Ory DS, Schaffer JE. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci USA. 2003; 100:3077-3082. https://doi.org/10.1073/pnas.0630588100

Cited by

  1. Modifying effects of low-intensity extremely high-frequency electromagnetic radiation on content and composition of fatty acids in thymus of mice exposed to X-rays vol.91, pp.3, 2015, https://doi.org/10.3109/09553002.2014.980467
  2. Lipids Affect the Cryptococcus neoformans-Macrophage Interaction and Promote Nonlytic Exocytosis vol.85, pp.12, 2013, https://doi.org/10.1128/iai.00564-17
  3. Changes in pancreatic histology, insulin secretion and oxidative status in diabetic rats following treatment with Ficus deltoidea and vitexin vol.17, pp.None, 2017, https://doi.org/10.1186/s12906-017-1762-8
  4. The Distinct Effects of Palmitic and Oleic Acid on Pancreatic Beta Cell Function: The Elucidation of Associated Mechanisms and Effector Molecules vol.9, pp.None, 2013, https://doi.org/10.3389/fphar.2018.01554
  5. Fatty Acid Mixtures from Nigella sativa Protects PC12 Cells from Oxidative Stress and Apoptosis Induced by Doxorubicin vol.24, pp.1, 2013, https://doi.org/10.15171/ps.2018.04
  6. Rosiglitazone ameliorates palmitic acid-induced cytotoxicity in TM4 Sertoli cells vol.16, pp.None, 2013, https://doi.org/10.1186/s12958-018-0416-0
  7. Elevated free fatty acids affect bovine granulosa cell function: a molecular cue for compromised reproduction during negative energy balance vol.8, pp.5, 2013, https://doi.org/10.1530/ec-19-0011
  8. Chemical Composition and Antiproliferative Effects of a Methanol Extract of Aspongopus chinensis Dallas vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/2607086
  9. Oleic acid protects insulin-secreting INS-1E cells against palmitic acid-induced lipotoxicity along with an amelioration of ER stress vol.64, pp.3, 2013, https://doi.org/10.1007/s12020-019-01867-3
  10. Effect of long chain fatty acids on triacylglycerol accumulation, fatty acid composition and related gene expression in primary cultured bovine satellite cells vol.30, pp.4, 2013, https://doi.org/10.1080/10495398.2018.1496925
  11. Modulation of Paraoxonase-1 and Apoptotic Gene Expression Involves in the Cardioprotective Role of Flaxseed Following Gestational Exposure to Diesel Exhaust Particles and/or Fenitrothion Insecticide vol.20, pp.6, 2020, https://doi.org/10.1007/s12012-020-09585-3
  12. Oleic acid ameliorates palmitic acid induced hepatocellular lipotoxicity by inhibition of ER stress and pyroptosis vol.17, pp.1, 2013, https://doi.org/10.1186/s12986-020-0434-8
  13. Molecular Mechanisms of Apoptosis Induction and Its Regulation by Fatty Acids in Pancreatic β-Cells vol.22, pp.8, 2021, https://doi.org/10.3390/ijms22084285
  14. Determination of Bioactive Compounds of Superior Mutant Rodent Tuber (Typhoniumflagelliforme) in Various Fractions Using GC-MS vol.794, pp.1, 2013, https://doi.org/10.1088/1755-1315/794/1/012144