DOI QR코드

DOI QR Code

Effects of Serial Passage on the Characteristics and Chondrogenic Differentiation of Canine Umbilical Cord Matrix Derived Mesenchymal Stem Cells

  • Lee, K.S. (Viral Disease Division, Animal, Plant and Fisheries Quarantine and Inspection Agency) ;
  • Cha, S.H. (Research Planning Division, Animal, Plant and Fisheries Quarantine and Inspection Agency) ;
  • Kang, H.W. (Viral Disease Division, Animal, Plant and Fisheries Quarantine and Inspection Agency) ;
  • Song, J.Y. (Viral Disease Division, Animal, Plant and Fisheries Quarantine and Inspection Agency) ;
  • Lee, K.W. (Viral Disease Division, Animal, Plant and Fisheries Quarantine and Inspection Agency) ;
  • Ko, K.B. (Research Planning Division, Animal, Plant and Fisheries Quarantine and Inspection Agency) ;
  • Lee, H.T. (Department of Animal Biotechnology, Konkuk University)
  • Received : 2012.09.10
  • Accepted : 2012.11.13
  • Published : 2013.04.01

Abstract

Mesenchymal stem cells (MSCs) are often known to have a therapeutic potential in the cell-mediated repair for fatal or incurable diseases. In this study, canine umbilical cord MSCs (cUC-MSCs) were isolated from umbilical cord matrix (n = 3) and subjected to proliferative culture for 5 consecutive passages. The cells at each passage were characterized for multipotent MSC properties such as proliferation kinetics, expression patterns of MSC surface markers and self-renewal associated markers, and chondrogenic differentiation. In results, the proliferation of the cells as determined by the cumulative population doubling level was observed at its peak on passage 3 and stopped after passage 5, whereas cell doubling time dramatically increased after passage 4. Expression of MSC surface markers (CD44, CD54, CD61, CD80, CD90 and Flk-1), molecule (HMGA2) and pluripotent markers (sox2, nanog) associated with self-renewal was negatively correlated with the number of passages. However, MSC surface marker (CD105) and pluripotent marker (Oct3/4) decreased with increasing the number of subpassage. cUC-MSCs at passage 1 to 5 underwent chondrogenesis under specific culture conditions, but percentage of chondrogenic differentiation decreased with increasing the number of subpassage. Collectively, the present study suggested that sequential subpassage could affect multipotent properties of cUC-MSCs and needs to be addressed before clinical applications.

Keywords

References

  1. Aust, L., B. Devlin, S. J. Foster, Y. D. Halvorsen, K. Hicok, T. du Laney, A. Sen, G. D. Willingmyre and J. M. Gimble. 2004. Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy 6:7-14. https://doi.org/10.1080/14653240310004539
  2. Barry, F. P., R. E. Boynton, S. Haynesworth, J. M. Murphy and J. Zaia. 1999. The monoclonal antibody SH-2, raised against human mesenchymal stem cells, recognizes an epitope on endoglin (CD105). Biochem. Biophys. Res. Commun. 265:134-139. https://doi.org/10.1006/bbrc.1999.1620
  3. Bonab, M. M., K. Alimoghaddam, F. Talebian, S. H. Ghaffari, A. Ghavamzadeh and B. Nikbin. 2006. Aging of mesenchymal stem cell in vitro. BMC Cell Biol. 10:7:14.
  4. Cheifetz, S., T. Belloel, C. Cale's, S. Vera, C. Bernabeu, J. Massague and M. Letarte. 1992. Endoglin is a component of the transforming growth factor-beta receptor system in human endothelial cells. J. Biol. Chem. 267:19027-19030.
  5. Cristofalo, V. J., R. G. Allen, R. J. Pignolo, B. G. Martin and J. C. Beck. 1998. Relationship between donor age and the replicative lifespan of human cells in culture: a reevaluation. Proc. Natl. Acad. Sci. 95:10614-10619. https://doi.org/10.1073/pnas.95.18.10614
  6. Danoviz, M. E., V. Bassaneze, J. S. Nakamuta, G. R. dos Santos-junior, D. Saint-Clair, M. C. Bajgelman, K. C. Fae, J. Kalil, A. A. Miyakawa and J. E. Krieger. 2011. Adipose tissue-derived stem cell from human and mice differ in proliferative capacity and genome stability in long-term culture. Stem Cells Dev. 20:661-670. https://doi.org/10.1089/scd.2010.0231
  7. Filioli Uranio, M., L. Valentini, A. Lange-consiglio, M. Caira, A. C. Guaricci, A. L'Abbate, C. R. Catacchio, M. Ventura, F. Cremonesi and M. E. Dell'Aquila. 2011. Isolation, proliferation, cytogenetic, and molecular characterization and in vitro differentiation potency of canine stem cells from foetal adnexa: a comparative study of amniotic fluid, amnion, and umbilical cord matrix. Mol. Reprod. Dev. 78:361-373. https://doi.org/10.1002/mrd.21311
  8. Hargus, G., R. Kist, J. Kramer, D. Gerstel, A. Neitz, G. Scherer and J. Rohwedel. 2008. Loss of Sox9 function results in defective chondrocyte differentiation of mouse embryonic stem cells in vitro. Int. J. Dev. Biol. 52:323-332. https://doi.org/10.1387/ijdb.072490gh
  9. Hatami, M., N. Z. Mehrjardi, S. Kiani, K. Hemmesi, H. Azizi, A. Shahverdi and H. Baharvand, 2009. Human embryonic stem cell-derived neural precursor transplants in collagen scaffolds promote recovery in injured rat spinal cord. Cytotherapy 11:618-630. https://doi.org/10.1080/14653240903005802
  10. Ito, Y., Jr. P. Bringas, A. Mogharei, J. Zhao, C. Deng and Y. Chai. 2002. Receptor-regulated and inhibitory Smads are critical in regulating transforming growth factor betamediated Meckeldi cartilage development. Dev. Dyn. 224:69-78. https://doi.org/10.1002/dvdy.10088
  11. Izadpanah, R., D. Kausha, C. Kriedt, F. Tsien, B. Patel, J. Dufour and B. A. Bunnell. 2008. Long-term in vitro expansion alters the biology of adult mesenchymal stem cells. Cancer Res. 68:4229-4238. https://doi.org/10.1158/0008-5472.CAN-07-5272
  12. Johnstone, B., T. M. Hering, A. I. Caplan, V. M. Goldberg and J. U. Yoo. 1998. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp. Cell Res. 238:265-272. https://doi.org/10.1006/excr.1997.3858
  13. Neupane, M., C. C. Chang, M. Kiupel and V. Yuzbasiyan- Gurkan. 2008. Isolation and characterization of canine adipose-derived mesenchymal stem cells. Tissue Eng. Part A. 14:1007-1015. https://doi.org/10.1089/ten.tea.2007.0207
  14. Mitchell, J. B., K. McIntosh, S. Zvonic, S. Garrett, Z. E. Floyd, A. Kloster, Y. Di Halvorsen, R. W. Storms, B. Goh, G. Kilroy, X. Wu and J. M. Gimble. 2006. Immunophenotype of human adipose-derived cells: temporal changes in stromal associated and stem cell-associated markers. Stem Cells 24:376-385. https://doi.org/10.1634/stemcells.2005-0234
  15. Pittenger, M. F. and B. J. Martin. 2004. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ. Res. 95:9-20. https://doi.org/10.1161/01.RES.0000135902.99383.6f
  16. Romanov, Y. A., V. A. Svintsitskaya and V. N. Smirnov. 2003. Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 21:105-110. https://doi.org/10.1634/stemcells.21-1-105
  17. Røsland, G. V., A. Svendsen, A. Torsvik, E. Sobala, E. McCormack, H. Immervoll, J. Mysliwietz, J. C. Tonn, R. Goldbrunner, P. E .Lønning, R. Bjerkvig and C. Schichor, 2009. Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res. 69:5331-5339. https://doi.org/10.1158/0008-5472.CAN-08-4630
  18. Rubio, D., J. Garcia-Castro, M. C. Martin, R. de la Fuente, J. C. Cigudosa, A. C. Lloyd and A. Bernad. 2005. Spontaneous human adult stem cell transformation. Cancer Res. 65:3035-3039.
  19. Safwani, W. K., S. Makpol, S. Santhapan, K. H. Chua. 2012. Alteration of gene expression level during osteogenic induction of human adipose derived stem cells in long term culture. Cell Tissue Bank. DOI:10.1007/s10561-012-9309-1.
  20. Schugar, R. C., S. M. Chirieleison, K. E. Wescoe, B. T. Schmidt, Y. Askew, J. J. Nance, J. M. Evron, B. Peault and B. M. Deasy. 2009. High harvest yield, high expansion, and phenotype stability of CD146 mesenchymal stromal cells from whole primitive human umbilical cord tissue. J. Biomed. Biotechnol. doi:10.1155/789526.
  21. Secco, M., E. Zucconi, N. M. Vieira, L. L. Fogaca, A. Cerqueira, M. D. Carvalho, T. Jazedje, O. K. Okamoto, A. R. Muotri and M. Zatz. 2008. Multipotent stem cells from umbilical cord: cord is richer than blood. Stem Cells 26:146-150. https://doi.org/10.1634/stemcells.2007-0381
  22. Seo, M. S., Y. H. Jeong, J. R. Park, S. B. Park, K. H. Rho, H. S. Kim, K. R. Yu, S. H. Lee, J. W. Jung, Y. S. Lee and K. S. Kang. 2009. Isolation and characterization of canine umbilical cord blood-derived mesenchymal stem cells. J. Vet. Sci. 10:181-187. https://doi.org/10.4142/jvs.2009.10.3.181
  23. Sharp, J., J. Frame, M. Siegenthaler, G. Nistor and H. S. Keirstead. 2010. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants improve recovery after cervical spinal cord injury. Stem Cells 28:152-163.
  24. Vaags, A. K., S. Rosic-Kablar, C. J. Gartley, Y. Z. Zheng, A. Chesney, D. A. Villagomez, S. A. Kruth and M. R. Hough. 2009. Derivation and characterization of canine embryonic stem cell lines with in vitro and in vivo differentiation potential. Stem Cells 27:329-340. https://doi.org/10.1634/stemcells.2008-0433
  25. Varma, M. J., R. G. Breuls, T. E. Schouten, W. J. Jurgens, H. J. Bontkes, G. J. Schuurhuis, S. M. van Ham and F. J. van Milligen. 2007. Phenotypical and functional characterization of freshly isolated adipose tissue-derived stem cells. Stem Cells Dev. 16:91-104. https://doi.org/10.1089/scd.2006.0026
  26. Vidal, M. A., G. E. Kilory, J. R. Johson, M. J. Lopez, R. M. Moore and J. M. Gimble. 2006. Cell growth characteristics and differentiation frequency of adherent equine bone marrow-derived mesenchymal stromal cells: adipogenic and osteogenic capacity. Vet. Surg. 35:601-610. https://doi.org/10.1111/j.1532-950X.2006.00197.x
  27. Vieira, N. M., V. Brandalise, E. Zucconi, M. Secco, B. E. Strauss and M. Zatz. 2010. Isolation, characterization, and differentiation potential of canine adipose-derived stem cells. Cell Transplant. 19:279-289. https://doi.org/10.3727/096368909X481764
  28. Wall., M. E., S. H. Bernacki and E. G. Loboa. 2007. Effects of serial passaging on the adipogenic and osteogenic differentiation potential of adipose-derived human mesenchymal stem cells. Tissue Eng. 13:1291-1298. https://doi.org/10.1089/ten.2006.0275
  29. Zaman, W. S., S. Makpol, S. Santhapan and K. H. Chua. 2008. Stemness gene expression profile of human adipose derived stem cells in long term culture. Med. J. Malaysia 63:61-62.
  30. Zhao, Y., S. D. Waldman and L. E. Flynn. 2011. The effect of serial passaging on the proliferation and differentiation of bovine adipose-derived stem cells. Cells Tissues Organs 195:414-427.
  31. Zheng, B., B. Cao, G. Li and J. Huard. 2006. Mouse adipose derived stem cells undergo multilineage differentiation in vitro but primarily osteogenic and chondrogenic differentiation in vivo. Tissue Eng. 12:1891-1901. https://doi.org/10.1089/ten.2006.12.1891
  32. Zucconi, E., N. M. Vieira, D. F. Bueno, M. Secco, T. Jazedje, C. E. Ambrosio, M. R. Passos-Bueno, M. A. Miglino and M. Zatz. 2010. Mesenchymal stem cells derived from canine umbilical cord vein-A novel source for cell therapy studies. Stem Cells Dev. 19:395-402. https://doi.org/10.1089/scd.2008.0314
  33. Zuk, P. A., M. Zhu, H. Mizuno, J. Huang, J. W. Futrell, A. J. Katz, P. Benhaim, H. P. Lorenz and M. H. Hedrick. 2001. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7:211-228. https://doi.org/10.1089/107632701300062859

Cited by

  1. Stem Cells from Foetal Adnexa and Fluid in Domestic Animals: An Update on Their Features and Clinical Application vol.50, pp.3, 2015, https://doi.org/10.1111/rda.12499
  2. A Comparative Study of Growth Kinetics, In Vitro Differentiation Potential and Molecular Characterization of Fetal Adnexa Derived Caprine Mesenchymal Stem Cells vol.11, pp.6, 2016, https://doi.org/10.1371/journal.pone.0156821
  3. Chondrogenic potential and anti-senescence effect of hypoxia on canine adipose mesenchymal stem cells vol.40, pp.1, 2016, https://doi.org/10.1007/s11259-015-9647-0
  4. Impact of the source and serial passaging of goat mesenchymal stem cells on osteogenic differentiation potential: implications for bone tissue engineering vol.7, pp.1, 2016, https://doi.org/10.1186/s40104-016-0074-z
  5. Effect of donor age on the proliferation and multipotency of canine adipose-derived mesenchymal stem cells vol.18, pp.2, 2017, https://doi.org/10.4142/jvs.2017.18.2.141
  6. Placental Stem Cells from Domestic Animals vol.27, pp.1, 2018, https://doi.org/10.1177/0963689717724797
  7. Altered properties of feline adipose-derived mesenchymal stem cells during continuous in vitro cultivation vol.80, pp.6, 2018, https://doi.org/10.1292/jvms.17-0563
  8. Mesenchymal stem cell basic research and applications in dog medicine pp.00219541, 2019, https://doi.org/10.1002/jcp.28348
  9. Advantages of Sheep Infrapatellar Fat Pad Adipose Tissue Derived Stem Cells in Tissue Engineering vol.6, pp.1, 2016, https://doi.org/10.15171/apb.2016.016
  10. Mesenchymal Stromal Cell Secretome: Influencing Therapeutic Potential by Cellular Pre-conditioning vol.9, pp.None, 2013, https://doi.org/10.3389/fimmu.2018.02837
  11. Metabolic profile and differentiation potential of extraembryonic endoderm-like cells vol.4, pp.None, 2013, https://doi.org/10.1038/s41420-018-0102-1
  12. A Feasibility Study on the Use of Equine Chondrogenic Induced Mesenchymal Stem Cells as a Treatment for Natural Occurring Osteoarthritis in Dogs vol.2019, pp.None, 2013, https://doi.org/10.1155/2019/4587594
  13. Mesenchymal Stromal Cells’ Therapy for Polyglutamine Disorders: Where Do We Stand and Where Should We Go? vol.14, pp.None, 2013, https://doi.org/10.3389/fncel.2020.584277
  14. TSG-6 in extracellular vesicles from canine mesenchymal stem/stromal is a major factor in relieving DSS-induced colitis vol.15, pp.2, 2020, https://doi.org/10.1371/journal.pone.0220756
  15. Comparison of Canine and Feline Adipose-Derived Mesenchymal Stem Cells/Medicinal Signaling Cells With Regard to Cell Surface Marker Expression, Viability, Proliferation, and Differentiation Potential vol.7, pp.None, 2013, https://doi.org/10.3389/fvets.2020.610240
  16. The Expression Pattern of Surface Markers in Canine Adipose-Derived Mesenchymal Stem Cells vol.22, pp.14, 2013, https://doi.org/10.3390/ijms22147476