DOI QR코드

DOI QR Code

Composition Dependence of Perpendicular Magnetic Anisotropy in Ta/CoxFe80-xB20/MgO/Ta (x=0, 10, 60) Multilayers

  • Lam, D.D. (Graduate School of Engineering Science, Osaka University) ;
  • Bonell, F. (Graduate School of Engineering Science, Osaka University) ;
  • Miwa, S. (Graduate School of Engineering Science, Osaka University) ;
  • Shiota, Y. (Graduate School of Engineering Science, Osaka University) ;
  • Yakushiji, K. (National Institute of Advanced Industrial Science and Technology (AIST), Spintronics Research Center) ;
  • Kubota, H. (National Institute of Advanced Industrial Science and Technology (AIST), Spintronics Research Center) ;
  • Nozaki, T. (National Institute of Advanced Industrial Science and Technology (AIST), Spintronics Research Center) ;
  • Fukushima, A. (National Institute of Advanced Industrial Science and Technology (AIST), Spintronics Research Center) ;
  • Yuasa, S. (National Institute of Advanced Industrial Science and Technology (AIST), Spintronics Research Center) ;
  • Suzuki, Y. (Graduate School of Engineering Science, Osaka University)
  • Received : 2012.10.19
  • Accepted : 2013.01.23
  • Published : 2013.03.31

Abstract

The perpendicular magnetic anisotropy of sputtered CoFeB thin films covered by MgO was investigated by vibrating sample magnetometry. Three different $Co_xFe_{80-x}B_{20}$ alloys were studied. Under out-of plane magnetic field, the saturation field was found to increase with increasing the Co content. The magnetization and interface anisotropy energy were obtained for all samples. Both showed a marked dependence on the MgO overlayer thickness. In addition, their variations were found to be non-monotonous as a function of the Co concentration.

Keywords

References

  1. T. Kishi, H. Yoda, T. Kai, T. Nagase, E. Kitagawa, M. Yoshikawa, K. Nishiyama, T. Daibou, M. Nagamine, M. Amano, S. Takahashi, M. Nakayama, N. Shimomura, H. Aikawa, S. Ikegawa, S. Yuasa, K. Yakushiji, H. Kubota, A. Fukushima, M. Oogane, T. Miyazaki, and K. Ando, IEEE International Electron Devices Meeting (IEDM) Technical Digest, 309 (2008).
  2. S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, and H. Ohno, Nature Mater. 9, 721 (2010). https://doi.org/10.1038/nmat2804
  3. K. Lee, J. J. Sapan, S. H. Kang, and E. E. Fullerton, J. Appl. Phys. 109, 123910 (2011). https://doi.org/10.1063/1.3592986
  4. D. C. Worledge, G. Hu, D. W. Abraham, J. Z. Sun, P. L. Trouilloud, J. Nowak, S. Brown, M. C. Gaidis, E. J. O'Sullivan, and R. P. Robertazzi, Appl. Phys. Lett. 98, 022501 (2011). https://doi.org/10.1063/1.3536482
  5. L. E. Nistor, B. Todmacq, C. Ducruet, C. Portemont, I. L. Prejbeanu, and B. Dieny, Magnetics, IEEE Trans. Magn. 46, 1412 (2010). https://doi.org/10.1109/TMAG.2010.2045641
  6. K. Nakamura, T. Akiyama, T. Ito, M. Weinert, and A. J. Freeman, Phys. Rev. B 81, 220409(R) (2010). https://doi.org/10.1103/PhysRevB.81.220409
  7. H. X. Yang, M. Chshiev, B. Dieny, J. H. Lee, A. Manchon, and K. H. Shin, Phys. Rev. B 84, 054401 (2011). https://doi.org/10.1103/PhysRevB.84.054401
  8. D. D. Lam, F. Bonell, S. Miwa, Y. Shiota, K. Yakushiji, H. Kubota, T. Nozaki, A. Fukushima, S. Yuasa, and Y. Suzuki, J. Kor. Phys. Soc. (to be published).
  9. S. Yakata, H. Kubota, Y. Suzuki, K. Yakushiji, A. Fukushima, S. Yuasa, and K. Ando, J. Appl. Phys. 105, 07D131 (2009). https://doi.org/10.1063/1.3057974
  10. S. Y. Jang, C. Y. You, S. H. Lim, and S. R. Lee, J. Appl. Phys. 109, 013901 (2011). https://doi.org/10.1063/1.3527968
  11. B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials, 2nd Ed. (2009) pp. 142-143.
  12. M. T. Johnson, P. J. H. Bloemen, F. J. A. den Broeder, and J. J. de Vries, Rep. Prog. Phys. 59, 1409 (1996). https://doi.org/10.1088/0034-4885/59/11/002
  13. Y. Ustinovshikov and B. Pushkarev, J. Alloys Compd. 424, 145 (2006). https://doi.org/10.1016/j.jallcom.2005.12.091
  14. B. Ujfalussy, L. Szunyogh, P. Bruno, and P. Weiberger, Phys. Rev. Lett. 77, 1805 (1996). https://doi.org/10.1103/PhysRevLett.77.1805
  15. L. Zhong, M. Kim, and X. Wang, J. Appl, Phys. 79, 5831 (1996). https://doi.org/10.1063/1.362202
  16. D. Wang, R. Wu, and A. J. Freeman, Phys. Rev. B 74, 14932 (1993).
  17. F. Bonell, T. Hauet, S. Andrieu, F. Bertran, P. L. Fevre, L. Camels, A. Tejeda, F. Montaigne, B. Warot-Fonrose, B. Belhadji, A. Nicolaou, and A. Taleb-Ibrahimi, Phys. Rev. Lett. 108, 176602 (2012). https://doi.org/10.1103/PhysRevLett.108.176602

Cited by

  1. Magnetism and Magnetocrystalline Anisotropy of Ni/Fe(001) Surface: A First Principles Study vol.25, pp.4, 2015, https://doi.org/10.4283/JKMS.2015.25.4.101
  2. Reduction in write error rate of voltage-driven dynamic magnetization switching by improving thermal stability factor vol.111, pp.2, 2017, https://doi.org/10.1063/1.4990680
  3. Composition on the Magnetic Properties of the Free Layer in Double-Barrier Magnetic Tunnel Junctions vol.10, pp.2, 2018, https://doi.org/10.1103/PhysRevApplied.10.024031
  4. Single-Crystal Substrates vol.215, pp.6, 2018, https://doi.org/10.1002/pssa.201700762