DOI QR코드

DOI QR Code

Linkage Disequilibrium Estimation of Chinese Beef Simmental Cattle Using High-density SNP Panels

  • Zhu, M. (Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences) ;
  • Zhu, B. (Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences) ;
  • Wang, Y.H. (Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences) ;
  • Wu, Y. (Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences) ;
  • Xu, L. (Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences) ;
  • Guo, L.P. (Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences) ;
  • Yuan, Z.R. (Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences) ;
  • Zhang, L.P. (Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences) ;
  • Gao, X. (Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences) ;
  • Gao, H.J. (Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences) ;
  • Xu, S.Z. (Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences) ;
  • Li, J.Y. (Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences)
  • Received : 2012.12.28
  • Accepted : 2013.02.27
  • Published : 2013.06.01

Abstract

Linkage disequilibrium (LD) plays an important role in genomic selection and mapping quantitative trait loci (QTL). In this study, the pattern of LD and effective population size ($N_e$) were investigated in Chinese beef Simmental cattle. A total of 640 bulls were genotyped with IlluminaBovinSNP50BeadChip and IlluminaBovinHDBeadChip. We estimated LD for each autosomal chromosome at the distance between two random SNPs of <0 to 25 kb, 25 to 50 kb, 50 to 100 kb, 100 to 500 kb, 0.5 to 1 Mb, 1 to 5 Mb and 5 to 10 Mb. The mean values of $r^2$ were 0.30, 0.16 and 0.08, when the separation between SNPs ranged from 0 to 25 kb to 50 to 100 kb and then to 0.5 to 1 Mb, respectively. The LD estimates decreased as the distance increased in SNP pairs, and increased with the increase of minor allelic frequency (MAF) and with the decrease of sample sizes. Estimates of effective population size for Chinese beef Simmental cattle decreased in the past generations and $N_e$ was 73 at five generations ago.

Keywords

References

  1. Chen, Y., C. H. Lin and C. Sabatti. 2006. Volume measures for linkage disequilibrium. BMC Genet. 7:54.
  2. Du, F. X., A. C. Clutter and M. M. Lohuis. 2007. Characterizing linkage disequilibrium in pig populations. Int. J. Biol. Sci. 3:166-178.
  3. FAO. 1998. Secondary Guidelines for Development of National Farm Animal Genetic Resources Management Plans: Managementof Small Populations at Risk. FAO, Rome, Italy.
  4. Farnir, F., W. Coppieters and J. J. Arranz. 2000. Extensive genome-wide linkage disequilibrium in cattle. Genome Res. 10:220-227. https://doi.org/10.1101/gr.10.2.220
  5. Goddard, M. G. and C. Smith. 1990. Optimum number of bull sires in dairy cattle breeding. J. Dairy Sci. 73:1113-1122. https://doi.org/10.3168/jds.S0022-0302(90)78771-1
  6. Hayes, B. J., P. M. Visscher, H. C. McPartlan and M. E. Goddard. 2003. Novel multilocus measure of linkage disequilibrium to estimate past effective population size. Genome Res. 13:635-643. https://doi.org/10.1101/gr.387103
  7. Hill, W. G. 1974. Estimation of linkage disequilibrium in randomly mating populations. Heredity 33:229-239. https://doi.org/10.1038/hdy.1974.89
  8. Khatkar, M., F. Nicholas, A. Collins, K. Zenger, J. Cavanagh, W. Barris, R. Schnabel, J. Taylor and H. Raadsma. 2008. Extent of genome-wide linkage disequilibrium in Australian Holstein-Friesian cattle based on a high-density SNP panel. BMC Genomics 9:187. https://doi.org/10.1186/1471-2164-9-187
  9. Kim, E. S and B. W. Kirkpatrick. 2009. Linkage disequilibrium in the North American Holstein population. Anim. Genet. 40:279-288. https://doi.org/10.1111/j.1365-2052.2008.01831.x
  10. Lewontin, R. C. 1964. The interaction of selection and linkage .i. general considerations; heterotic models. Genetics 49:49-67.
  11. Longworth, J. W., C. G. Brown and S. A. Waldron. 2001. Beef in China: agribusiness opportunities and challenges. University of Queensland Press.
  12. Lu, D., M. Sargolzaei, M. Kelly, C. Li, V. V. Gordon, Z. Wang, G. Plastow, S. Moore and S. P. Miller. 2012. Linkage disequilibrium in Angus, Charolais, and Crossbred beef cattle. Front Genet. 3:152-161.
  13. McParland, S., J. F. Kearney and M. Rath. 2007. Inbreeding trends and pedigree analysis of Irish dairy and beef cattle populations. J. Anim. Sci. 85:322-331. https://doi.org/10.2527/jas.2006-367
  14. McKay, S., R. Schnabel, B. Murdoch, L. K. Matukumalli, J. Aerts, W. Coppieters, D. Crews, E. DiasNeto, C. A. Gill, C. Gao, H. Mannen and P. Stothard. 2007. Whole genome linkage disequilibrium maps in cattle. BMC Genet. 8:74.
  15. McVean, G. A. T. 2002. A genealogical interpretation of linkage disequilibrium. Genetics 162:987-991.
  16. McClure, M. C., N. S. Morsci, R. D. Schnabel, J. W. Kim, P. Yao, M. M. Rolf, S. D. Mckay, S. J. Greqq and J. F. Taylor. 2010. A genome scan for quantitative trait loci influencing carcass, post-natal growth and reproductive traits in commercial Angus cattle. Anim. Genet. 41:597-607. https://doi.org/10.1111/j.1365-2052.2010.02063.x
  17. Mukai, F., S. Tsuj, K. Fukazawa, S. Ohtagaki and Y. Nambu. 1989. History and population structure of a closed strain of Japanese black cattle. J. Anim. Breed. Genet. 106:254-264. https://doi.org/10.1111/j.1439-0388.1989.tb00239.x
  18. Nachman, M. W. 2002. Variation in recombination rate across the genome: evidence and implications. Curr. Opin. Genet. Dev. 12:657-663. https://doi.org/10.1016/S0959-437X(02)00358-1
  19. Nomura, T., T. Honda and F. Mukai. 2001. Inbreeding and effective population size of Japanese Black cattle. J. Anim. Sci. 79:366-370.
  20. Odani, M., A. Narita, T. Watanabe, K. Yokouchi, Y. Sugimoto, T. Fujita, T. Oguni, M. Matsumoto and Y. Sasaki. 2006. Genome-wide linkage disequilibrium in two Japanese beef cattle breeds. Anim. Genet. 37:139-144. https://doi.org/10.1111/j.1365-2052.2005.01400.x
  21. Purcell, S., B. Neale, K. Todd-Brown, L. Thomas, M. A. Ferreira, D. Bender, J. Maller, P. Sklar, P. I. Bakker, M. J. Daly and P. C. Sham. 2007. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81:559-575. https://doi.org/10.1086/519795
  22. Qanbari, S., E. C. G. Pimentel, J. Tetens, G. Thaller, P. Lichtner, A. R. Sharifi and H. Simianer. 2010. The pattern of linkage disequilibrium in German Holstein cattle. Anim. Genet. 41:346-356.
  23. Reich, D. E., M. Cargill, S. Bolk, J. Ireland, P. C. Sabeti, D. J. Richter, T. Lavery, R. Kouyoumjian, S. F. Farhadian, R. Ward and E. S. Lander. 2001. Linkage disequilibrium in the human genome. Nature 411:199-204. https://doi.org/10.1038/35075590
  24. Sargolzaei, M., F. S. Schenkel, G. B. Jansen and L. R. Schaeffer. 2008. Extent of linkage disequilibrium in Holstein cattle in North America. J. Dairy Sci. 91:2106-2117. https://doi.org/10.3168/jds.2007-0553
  25. Smith, E. M., X. Wang, J. Littrell, J. Eckert, R. Cole, A. H. Kissebah and M. Olivier. 2006. Comparison of linkage disequilibrium patterns between the HapMap CEPH samples and a family-based cohort of Northern European descent. Genomics 88:407-414. https://doi.org/10.1016/j.ygeno.2006.04.004
  26. Sved, J. A. 1971. Linkage disequilibrium and homozygosity of chromosome segments in finite populations. Theor. Popul. Biol. 2:125-141. https://doi.org/10.1016/0040-5809(71)90011-6
  27. Terwilliger, J. D., F. Haghighi, T. S. Hiekkalinna and H. H. H. Goring. 2002. A biased assessment of the use of SNPs in human complex traits. Curr. Opin. Genet. Dev. 12:726-734. https://doi.org/10.1016/S0959-437X(02)00357-X
  28. Wright, S. 1938. Size of population and breeding structure in relation to evolution. Science 87:430-431.
  29. Weir, B. S. and W. G. Hill. 1980. Effect of mating structure on variation in linkage disequilibrium. Genetics 95:477-488.
  30. Yan, J., T. Shah, M. L. Warburton, E. S. Buckler, M. D. McMullen and J. Crouch. 2009. Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PLoS ONE 4:e8451. https://doi.org/10.1371/journal.pone.0008451
  31. Zhao, H., D. Nettleton and J. C. M. Dekkers. 2007. Evaluation of linkage disequilibrium measures between multi-allelic markers as predictors of linkage disequilibrium between single nucleotide polymorphisms. Genet. Res. 89:1-6. https://doi.org/10.1017/S0016672307008634

Cited by

  1. Genome-wide linkage disequilibrium analysis of indigenous cattle breeds of Ethiopia and Korea using different SNP genotyping BeadChips vol.37, pp.9, 2015, https://doi.org/10.1007/s13258-015-0304-3
  2. Comparison of linkage disequilibrium levels in Iranian indigenous cattle using whole genome SNPs data vol.57, pp.1, 2015, https://doi.org/10.1186/s40781-015-0080-2
  3. Genetic diversity analysis of two commercial breeds of pigs using genomic and pedigree data vol.48, pp.1, 2016, https://doi.org/10.1186/s12711-016-0203-3
  4. Relationship of runs of homozygosity with adaptive and production traits in a paternal broiler line pp.1751-732X, 2018, https://doi.org/10.1017/S1751731117002671
  5. Genetic Divergence of Cattle Populations Based on Genomic Information vol.47, pp.3, 2016, https://doi.org/10.1515/sab-2016-0016
  6. Estimation of Linkage Disequilibrium and Effective Population Size in Three Italian Autochthonous Beef Breeds vol.10, pp.6, 2013, https://doi.org/10.3390/ani10061034