Synthesis of Tungsten Doped Vanadium Dioxide and Its Thermochromic Property Studies

텅스텐이 도핑된 바나듐 산화물의 합성 및 열전이 특성 연구

  • Hwang, Kyung-Jun (Eco-Composite Materials Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Jo, Cho Won (Department of Chemical and Biological Engineering, Korea University) ;
  • Yoo, Jung Whan (Eco-Composite Materials Center, Korea Institute of Ceramic Engineering & Technology)
  • 황경준 (한국세라믹기술원 에코복합소재센터) ;
  • 조초원 (고려대학교 화공생명공학과) ;
  • 유중환 (한국세라믹기술원 에코복합소재센터)
  • Published : 2013.02.10

Abstract

In this work, we have prepared tungsten doped vanadium oxide ($W-VO_2$) particles with a low phase transition temperature. $W-VO_2$ particles were synthesized via thermolysis method using vanadyl (IV) sulfate and ammonium bicarbonate as precursors. The structure and thermochromic property of synthesized $W-VO_2$ particles were investigated by FE-SEM, EDS, XRD, XPS, and DSC analysis. The prepared $W-VO_2$ showed a nearly platy morphology, which indicates that the tungsten was successfully doped in the crystal lattices of $VO_2$. $W-VO_2$ nanoparticles with the size of 60 nm exhibited a monoclinic crystal structure and its chemical composition and surface state were also likely to be close to that of $VO_2$. In addition, the phase transition temperature of $W-VO_2$ was $38.5^{\circ}C$, which was approximately $29.2^{\circ}C$ lower than that of pure $VO_2$ ($67.7^{\circ}C$), indicating that the prepared sample had a good reversible thermochromic stability.

본 연구에서는 낮은 열전이 온도를 가지는 텅스텐이 도핑된 이산화바나듐$(W-VO_2)$을 제조하였다. 텅스텐이 도핑된 이산화바나듐은 바나딜설페이트$(VOSO_4)$와 중탄산암모늄($(NH_4)$ $HCO_3$)을 전구체로 열분해 과정을 통해 제조하였다. 이에 대한 입자의 구조 및 열전이 특성을 FE-SEM, EDS, XRD, XPS, DSC 분석을 통해 조사하였다. 그 결과 텅스텐이 도핑된 이산화바나듐 입자의 형상은 판상형태로 텅스텐이 이산화바나듐 결정에 잘 도핑 되어 있음을 확인 하였다. 텅스텐이 도핑된 이산화바나듐의 결정 구조는 단사정으로 60 nm의 크기를 가지고 있었으며, 화학적인 조성 및 표면 상태는 이산화바나듐과 유사하였다. 또한, 텅스텐이 도핑된 이산화바나듐의 상전이 온도는 $38.5^{\circ}C$로 순수한 이산화바나듐의 상전이 온도인 $67.7^{\circ}C$에 비해 $29.2^{\circ}C$ 낮게 나타났으며, 가역 상전이 안정성이 우수하였다.

Keywords

References

  1. F. J. Morin, Phys. Rev. Lett., 3, 34 (1959). https://doi.org/10.1103/PhysRevLett.3.34
  2. C. H. Griffiths and H. K. Eastwood, J. Appl. Phys., 45, 2201 (1974). https://doi.org/10.1063/1.1663568
  3. Y. Muraoka, Y. Ueda, and Z. Hiroi, J. Phys. Chem. Solids, 63, 965 (2002). https://doi.org/10.1016/S0022-3697(02)00098-7
  4. J. B. Goodenough. J. Solid State Chem., 3, 490 (1971). https://doi.org/10.1016/0022-4596(71)90091-0
  5. A. Zylbersztejn and N. F. Mott, Phys. Rev. B, 11, 4383 (1975). https://doi.org/10.1103/PhysRevB.11.4383
  6. T. Marutama and Y. Ikuta, J. Mater. Sci., 28, 5073 (1993). https://doi.org/10.1007/BF00361182
  7. G. Micocci, A. Serra, A. Tepore, S. Capone, R. Rella, and P. Siciliano, J. Vac. Sci. Technol. A., 15, 34 (1997). https://doi.org/10.1116/1.580471
  8. N. R. Mlyuka G. A. Niklasson, and C. G. Granqvist, Sol. Energ. Mat. Sol. C., 93, 1685 (2009). https://doi.org/10.1016/j.solmat.2009.03.021
  9. P. Jin, G. Xu, M. Tazawa, and K. Yoshimura, Appl. Phys. A-Mater., 77, 455 (2003).
  10. C. Batista, R. M Ribeiro, and V. Teixeira, Nanoscale. Res. Lett., 6, 301 (2011). https://doi.org/10.1186/1556-276X-6-301
  11. S. Ji, F. Zhang, and P. Jin, Sol. Energ. Mat. Sol. C., 95, 3520 (2011). https://doi.org/10.1016/j.solmat.2011.08.015
  12. W. Burkhardt, T. Christmann, B. K., Meyer, W. Niessner, D. Schalch, and A. Scharmann, Thin Solid Films, 345, 229 (1999). https://doi.org/10.1016/S0040-6090(98)01406-0
  13. T. J. Hanlon, J. A. Coath, and M. A. Richardson, Thin Solid Films, 436, 269 (2003). https://doi.org/10.1016/S0040-6090(03)00602-3
  14. K. Rogers, Powder Diffr., 8, 240 (1993). https://doi.org/10.1017/S0885715600019448
  15. J. Shi, S. Zhou, B. You, and L. Wu, Sol. Energ. Mat. Sol. C., 91, 1856 (2007). https://doi.org/10.1016/j.solmat.2007.06.016
  16. A. Pan, J.-G. Zhang, Z. Nie, G. Cao, B.-W. Arey, G. Li, S.-Q. Liang, and J. Liu, J. Mater. Chem., 20, 9193 (2010). https://doi.org/10.1039/c0jm01306d
  17. G. Silversmit, D. Depla, H. Poelman, G. B. Marin, and R. DeGryse, J. Electron Spectrosc. Rel. Phenom., 135, 167 (2004). https://doi.org/10.1016/j.elspec.2004.03.004
  18. S. P. Nachr and. G. W. Goettingen, Math.-Phys. Kl., 2, 98 (1918).
  19. J. Z. Yan, Y. Zhang, W. X. Huang, and M. G. Tu, Thin Solid Films, 516, 8554 (2008). https://doi.org/10.1016/j.tsf.2008.05.021
  20. J. Ye, L. Zhou, F. Liu, J. Qi, W. Gong, Y. Lin, and G. Ning, J. Alloy. Compd., 504, 503 (2010). https://doi.org/10.1016/j.jallcom.2010.05.152
  21. C. Tang, P. Georgopoulos, M. E. Fine, and J. B. Cohen, Phys. Rev. B, 31, 1000 (1985). https://doi.org/10.1103/PhysRevB.31.1000
  22. M. Pan, H. M. Zhong, S. W. Wang, J. Liu, Z. F. Li, X. S. Chen, and W. Lu, J. Cryst. Growth, 265, 121 (2004). https://doi.org/10.1016/j.jcrysgro.2003.12.065
  23. A. R. Begishev, G. B. Galiev, A. S. Ignat'ev, V. G. Mokerov, and V. G. Poshin, Sov. Phys. Solid State, 20, 951 (1978).
  24. C. H. Griffiths and H. K. Eastwood, J. Appl. Phys., 45, 2201 (1974). https://doi.org/10.1063/1.1663568
  25. Y. Sun, S. Jiang, W. Bi, R. Long, X. Tan, C. Wu, S. Wei, and Y. Xie, Nanoscale, 3, 4394 (2011). https://doi.org/10.1039/c1nr10976f