Effect of Halogen-phosphours Flame Retardant Content on Properties of Rigid Polyurethane Foam

인-할로겐계 난연제가 경질폴리우레탄 폼의 물성에 미치는 영향

  • Kim, Chang Bum (Department of Chemical Engineering, Kyonggi University) ;
  • Kim, Sang Bum (Department of Chemical Engineering, Kyonggi University)
  • Published : 2013.02.10

Abstract

In this study, the effect of halogen-phosphorus flame retardant on the flame retardancy and the mechanical properties of the rigid polyurethane foam (PUF) were studied. The reduced compressive strength and glass transition temperature of PUF decreased as contents of the flame retardant increased. After aging, the reduced compressive strength and glass transition temperature of PUF increased due to the reaction of unreacted isocyanate. The cell morphology effect of these flame retardants was also investigated using scanning electron microscope. The results of TCEP added to PUF showed an unstable and uneven cell morphology, leading to the increase of in thermal conductivity. The flame retardancy of vacuum aged PUF decreased compared to that of fresh PUF.

본 연구에서는 인-할로겐계 난연제가 첨가된 경질 폴리우레탄 폼(PUF)을 합성하여 인-할로겐계 난연제의 종류와 함유량, 노화 가속화 전 후의 열적, 물리적, 난연 특성 등의 변화와 이들의 상관관계를 조사하였다. 난연제로는 Tri(2-chloroethyl) phosphate [TCEP]와 Tris(2-chloropropyl) phosphate [TCPP]를 0, 3, 5, 10, 15, 20, 30%씩 변화시키며 첨가하였다. 난연제의 첨가량이 증가함에 따라 PUF의 reduced compressive strength와 유리전이 온도가 감소하였다. 노화 가속화 후에는 초기 미 반응된 물질의 추가 반응으로 인하여 reduced compressive strength와 유리전이 온도가 증가하였다. SEM과 열전도도 측정을 통하여 TCPP가 TCEP보다 cell의 크기와 분포를 균일하게 하여 TCPP가 첨가된 PUF가 TCEP가 첨가된 PUF 보다 열전도도가 감소 한다는 것을 알 수 있었다. Vacuum oven을 통한 노화가속화 전후의 PUF 난연성을 비교한 결과 노화 후 PUF의 발화 시간은 감소하고 연소 거리가 증가하여 난연성이 현저히 감소함을 확인하였다.

Keywords

References

  1. P. A. Atkinson, P. J. Haines, G. A. Skinner, and T. J Lever, J. Therm. Anal. Calorim., 59, 395 (2000). https://doi.org/10.1023/A:1010129206206
  2. Y. H. Song, D. M. Ha, and G. S. Jung, Journal of Korean Institute of Fire Scinece & Engineering, 20, 185 (2006).
  3. Y. G. Gang and J. H. Song, Journal of the Korean Institute of Industrial Safety, 18, 63 (2009).
  4. A. R. Horrocks and D. Prince, Fire Retardant Materials, CRC, New York (2001)
  5. G. L. Nelsion, American Chemical Society, Washington, DC. (1990).
  6. M. Lewis, S. M. Altas, and E. M. Pearce, Plenum Press, New York (1975).
  7. G. U. Kim, Fiber technology and industry, 11, 598 (2007).
  8. G. Oertel, Polyurethane Handbook, Hanser Publishers, New York. (1985).
  9. A. Fina, H. C. L. Abbenhuis, D. Tabuani, and G. Camino, Polymer Degradation and Stability, 91, 2275 (2006). https://doi.org/10.1016/j.polymdegradstab.2006.04.014
  10. A. P. Mouritz, Z. Mathys, and A. G. Gibson, Composites Part A : Applied Science and Manufacturing, 37, 1040 (2006). https://doi.org/10.1016/j.compositesa.2005.01.030
  11. Y. K. Kong and D. H. Lee, Journal of Korean Institute of Fire Science & Engineering, 17, 117 (2003).
  12. Y. J. Chung, Journal of Korean Institute of Fire Scinece & Engineering, 20, 110 (2006).
  13. M. Modesti, L. Zanella, A. Lorenzetti, R. Bertani, and M. Gleria, Polymer degradation and stability, 87, 2872 (2005).
  14. H. Kown, S. B Kim, and Y. C. Kim, Polymer (Korea), 29, 457 (2005).
  15. Y. H. Choi and W. K. Lee, Journal of the Korean Industrial and Engineering, 20, 459 (2009).
  16. J. H. Lee, J. H. Nam, and J. D. Nam, Polymer (Korea), 27, 569 (2003).
  17. P. Cong, S. Chen, and J. Yu, Construction & Building Materials, 24, 2554 (2010). https://doi.org/10.1016/j.conbuildmat.2010.05.022