Preparation of Palladium on Carbon for Hydrogenation Catalyst Using [Bmim][$CF_3SO_3$] as an Effective Solvent

기능성 용매인 [Bmim][$CF_3SO_3$]를 이용한 수소화반응용 탄소 담지 팔라듐 촉매 제조

  • Tae, Hyunman (Department of Chemical Engineering, Seoul National University of Science & Technology) ;
  • Jeon, Seung Hye (Department of Chemical Engineering, Seoul National University of Science & Technology) ;
  • Yoo, Kye Sang (Department of Chemical Engineering, Seoul National University of Science & Technology)
  • 태현만 (서울과학기술대학교 화공생명공학과) ;
  • 전승혜 (서울과학기술대학교 화공생명공학과) ;
  • 유계상 (서울과학기술대학교 화공생명공학과)
  • Published : 2013.02.10

Abstract

Palladium particles were synthesized with 1-buthyl-3-methylimidazolium trifluoromethanesulfonate ([Bmim][$CF_3SO_3$]) as an effective solvent during the synthesis. The morphology of the particles was affected by the concentration of [Bmim][$CF_3SO_3$]. Furthermore, the palladium on carbon powder was prepared with various [Bmim][$CF_3SO_3$] concentrations and calcinations temperatures as a catalyst for hexafluoropropylene hydrogenation. Catalytic activity was varied by both conditions significantly. Under the identical condition, the catalyst prepared by the same mole ratio of [Bmim][$CF_3SO_3$] and palladium, and calcined at $500^{\circ}C$ was the most active in this reaction.

기능성 용매인 1-buthyl-3-methylimidazolium trifluoromethanesulfonate ([Bmim][$CF_3SO_3$])를 이용하여 팔라듐 입자를 제조하였다. 제조된 입자의 형상은 기능성용매의 농도에 영향을 받았다. 또한 hexafluoropropylene 수소화 반응용 촉매를 제조하기 위하여 탄소 담지 팔라듐 입자를 제조하였다. 촉매 제조 시 기능성용매의 농도와 소성온도를 변화해 가면서 최적의 촉매제조 조건을 구하고자 하였다. 수소화 촉매의 반응활성의 상기의 두 가지 제조조건에 따라서 크게 달라지는 것이 관찰되었다. 동일한 반응조건에서 기능성용매와 팔라듐 전구체의 몰 비가 동일하고 소성온도가 $500^{\circ}C$에서 제조된 촉매가 가장 우수한 반응성을 보였다.

Keywords

References

  1. M. Fernandez-Garcia, A. Martinez-Arias, L. N. Salamanca, J. M. Coronado, J. A. Anderson, J. C. Conesa, and J. Soria, J. Catal., 187, 474 (1999). https://doi.org/10.1006/jcat.1999.2624
  2. Y. Nishihata, J. Mizuki, T. Akao, H. Tanaka, M. Uenishi, M. Kimura, T. Okamoto, and N. Hamada, Nature, 418, 164 (2002). https://doi.org/10.1038/nature00893
  3. J. M. Thomas, B. F. G. Johnson, R. Raja, G. Sankar, and P. A. Midgley, Acc. Chem. Res., 36, 20 (2003). https://doi.org/10.1021/ar990017q
  4. L. Schlapbach and A. Zuttel, Nature, 414, 353 (2001). https://doi.org/10.1038/35104634
  5. M. T. Reetz and E. Westermann, Angew. Chem, Int. Ed., 39, 165 (2000). https://doi.org/10.1002/(SICI)1521-3773(20000103)39:1<165::AID-ANIE165>3.0.CO;2-B
  6. Y. Li, X. M. Hong, D. M. Collard, and M. A. El-Sayed, Org. Lett., 2, 2385 (2000). https://doi.org/10.1021/ol0061687
  7. S.-W. Kim, M. Kim, W. Y. Lee, and T. Hyeon, J. Am. Chem. Soc., 124, 7642 (2002). https://doi.org/10.1021/ja026032z
  8. R. Narayanan and M. A. El-Sayed, Nano Lett., 4, 1343 (2004). https://doi.org/10.1021/nl0495256
  9. S. E. Habas, H. Lee, V. Radmilovic, G. A. Somorjai, and P. Yang, Nat. Mater., 6, 692 (2007). https://doi.org/10.1038/nmat1957
  10. K. M. Bratlie, H. Lee, K. Komvopoulos, P. Yang, and G. A. Somorjai, Nano Lett., 7, 3097 (2007). https://doi.org/10.1021/nl0716000
  11. C. Wang, H. Daimon, T. Onodera, T. Koda, and S. Sun, Angew. Chem, Int. Ed., 47, 3588 (2008). https://doi.org/10.1002/anie.200800073
  12. P. Wasserscheid and W. Keim, Angew. Chem. Int. Ed., 39, 3773 (2000).
  13. T. Welton, Chem. Rev., 99, 2071 (1999). https://doi.org/10.1021/cr980032t
  14. K. Avril, B. Collier, US patent 0021849 A1 (2011).
  15. C. S. Kim, H. Tae, S. H. Jeon, and K. S. Yoo, Res. Chem. Intermed (in press).
  16. G. S. Fonseca, G. Machado, S. R. Teixeira, G. H. Fecher, J. Morais, M. C. M. Alves, and J. Dupont, J. Colloid Interface Sci., 301, 193 (2006). https://doi.org/10.1016/j.jcis.2006.04.073