The Syntheses of Phthalocyanine Hybrid Derivatives and Their Properties

프탈로시아닌계 하이브리드 유도체들의 합성 및 이의 특성에 관한 연구

  • Kim, Seong Jin (Department of Industrial & Engineering Chemistry, Pukyoung National University) ;
  • An, Ba Ryong (Department of Industrial & Engineering Chemistry, Pukyoung National University) ;
  • Lee, Gun-Dae (Department of Industrial & Engineering Chemistry, Pukyoung National University) ;
  • Park, Seong Soo (Department of Industrial & Engineering Chemistry, Pukyoung National University)
  • Published : 2013.06.10

Abstract

Phthalocyanine (Pc), porphyrin, subphthalocyanine, and perylene compounds can be applicable to the fields of optical storage media, organic solar cell, LCD, PDP, semiconductor, and counterfeit money detection etc. In this study, phthalocyanine hybrid derivatives were synthesized by cross-linking perylene, subphthalocyanine, or porphyrin to the main frame of Pc. Absorbtion band of two different wavelengths appeared simultaneously in the phthalocyanine hybrid derivatives. Compared to phthalocyanine, the solubility was enhanced and the degree of Q-band shift was changed according to the kind of substitute compounds. The chemical and optical properties of samples were analyzed using FT-IR, $^1H-NMR$, and UV-Vis spectroscopic techniques.

프탈로시아닌, 포르피린, 서브프탈로시아닌 및 퍼릴렌 화합물들은 광저장매체, 유기 태양전지, LCD, PDP, 반도체, 위폐 감별용 재료 등으로 응용된다. 본 연구에서는 퍼릴렌, 서브프탈로시아닌 및 포르피린을 프탈로시아닌 프레임에 가교 결합시켜서 프탈로시아닌계 하이브리드 유도체를 합성하였다. 합성된 하이브리드 시료들은 두 가지 다른 파장영역을 동시에 흡수하였다. 또한, 프탈로시아닌에 비하여 유도체의 도입으로 인하여 시료의 용해도가 향상되었으며, 치환된 유도체의 종류에 따라 Q-band가 장파장 영역으로 이동하는 정도가 상이하였다. 시료들의 화학적 특성 및 광학적 특성은 FT-IR, $^1H-NMR$, UV-Vis를 이용하여 비교 분석하였다.

Keywords

References

  1. C. C. Leznoff, Phthalocyanine; Properties and Applications, A. B. P. Lever (Eds.), VCH-Publishers, New York, 219 (1996).
  2. D. Dini, M. Barthel, and M. Hanack, Eur. J. Org. Chem., 20, 3759 (2001).
  3. K. M. Kadish and K. M. Smith, The Porphyrin Handbook, R. Guilard (Eds.), Academic Press, San Diego, 1 (2003).
  4. K. Kasuga, A. Fujita, T. Miyazako, M. Handa, and T. Sugimori, Inorg. Chem. Commun., 3, 634 (2000). https://doi.org/10.1016/S1387-7003(00)00166-0
  5. C. S. Frampton, J. M. O'Conner, J. Retevson, and J. Silver, Displays, 174 (1988).
  6. A. Gurek, V. Ahsen, A. Gul, and O. Bekaroglu, J. Chem. Soc., Dalton Trans., 3367 (1991).
  7. J. Hjelm, W. Robyn, A. Hagfeldt, E. C. Constable, C. E. Housecroft, and R. J. Forster, Inorg. Chem., 44, 1073 (2005). https://doi.org/10.1021/ic049221m
  8. G. Seybold and G. Wagenblast, Dyes and Pigments, 11, 303 (1989). https://doi.org/10.1016/0143-7208(89)85048-X
  9. D. Dotcheva, M. Klapper, and K. Mullen, Macromol. Chem. Phys., 195, 1905 (1994). https://doi.org/10.1002/macp.1994.021950602
  10. U. Rohr, P. Schlichting, A. Btihm, M. Cross, K. Meerholz, C. Briuchle, and K. Mtiilen, Angew. Chem., Int. Ed. Engl., 37, 1434 (1988).
  11. K. A. Volkov, G. V. Avramenko, V. M. Negrimovskii, and E. A. Luk'yanets, Zh. Obshch. Khim., 77, 1022 (2007).
  12. A. D. Adler, F. R. Longo, J. D. Finarelli, J. Goldmacher, J. Assour, and L. Korsakoff, J. Org. Chem., 32, 476 (1967).
  13. R. D. George and A. W. Snow, J. Heterocyclic Chem., 32, 495 (1995). https://doi.org/10.1002/jhet.5570320219
  14. J. G. Young and W. Onyebuagu, J. Org. Chem., 55, 2155 (1990). https://doi.org/10.1021/jo00294a032
  15. D. W. Thomas and A. R. Martell, J. Am. Chem. Soc., 78, 1338 (1956). https://doi.org/10.1021/ja01588a021
  16. C. G. Claessens, D. Gonzalez-Rodriguez, and T. Torres, Chem. Rev., 102, 835 (2002). https://doi.org/10.1021/cr0101454
  17. T. Qiu, X. Xu, J. Liu, and X. Qian, Dyes & Pigments, 83, 127 (2009). https://doi.org/10.1016/j.dyepig.2009.04.007